Protections & Interlocks in power plants

 Interlocks: Are the programmed or hardwired control systems to protect systems and improve the operation reliability.

Protections: Are the programmed or hardwired control systems to protect the equipments, man power and systems from failure/harm.

The interlock and protection system is used to ensure safety of equipment and personnel as well as smooth & trouble free operation of the plant

This system initiates automatic corrective actions to stabilize the unit quickly. The protection scheme is developed to trip the equipment automatically with or Class A trip involves a serious electrical fault like differential, stator earth fault etc. and is considered to be the most dangerous in terms of the shock on the unit. Since it involves serious electrical faults, connections from both generator and the HV bus is immediately switched off to limit the damage at the fault point and also to isolate the healthy system. Hence the unit (turbine, generator and boiler) has to be tripped without time delay. Alarm & buzzers are generally used to alert the operator.

POWER PLANT PROTECTIONS & INTERLOCKS AND THEIR SIGNIFICANCE

Sl No.

Interlock description

Significance

A

Boiler

 

1

FD & SA fan trip/stop on tripping of ID fans

To avoid furnace pressurizing

2

Fuel feeding system trip/stop on trip/stop of SA fans

To avoid jamming of fuel feeding system due to no spreading air

3

FD fans trip/stop on high furnace pressure (>25 MMWC)

1-To avoid furnace leakage

2-To avoid furnace explosion

3-To avoid buck stay damage

4

ID fans trip/stop on low furnace pressure (-25 MMWC)

1-To avoid carryover of fuel at secondary combustion zone

2-To avoid back end flue gas ducts explosion due to accumulation of unburnt (Unburnt results into formation of CO gas)

5

FD fan trips on low drum level (On tripping ID fans, boiler all systems like FD,SA & fuel feeding system trip)

To avoid boiler pressure parts over heating & failure

B

Steam Turbine

 

1

Turbine trips on high main steam pressure

To protect turbine internals & casing from high pressure damage

2

Turbine trips on low main steam pressure

To protect turbine internals from  saturated  steam (water particles in steam)

3

Turbine trips on high main steam temperature

To protect Turbine internals from creep failure (Turbine internals fail on prolonged exposure to temperature more than recommended)

4

Turbine trips on low temperature

1-To protect Turbine from uneven expansion

2-To protect Turbine internals from water particles in steam (Low pressure & temperature steam will have water particles in it)

5

Turbine trips on high bearing temperature (>110 deg C)

To protect turbine bearing failure & other secondary system/operation interruption for long time

6

Turbine trips on high vibration (>5 mm/sec or >110 microns)

To protect turbine bearing failure & other secondary system/operation interruption for long time

7

Turbine trips on high axial displacement

To protect turbine internals from rubbing & damages

8

Turbine trips on high differential expansion

To protect turbine internals uniform thermal expansion & from rubbing & damages

9

Turbine trips on low control oil pressure

To ensure reliable operation of HP & LP actuators

10

Turbine trips on low lube oil pressure

To avoid damages to the bearings

11

Turbine trips on low trip oil pressure

 

12

Turbine trips on low vacuum or high exhaust pressure

To avoid damages to the rotor blades

Note: High back pressure on rotor creates reaction force to rotation of turbine rotor

13

Turbine trips on high back pressure

 

14

Vacuum breaker valve opens on activation of trip interlocks like

To reduce the speed of rotor within minimum time to avoid damages to the bearings & internal parts.

1.High bearing temperature

Note: High back pressure on rotor creates reaction force to rotation of turbine rotor

2-High bearing vibration

 

3-High axial displacement

 

4-High differential expansion

 

5-Low lube oil pressure

 

15

High hot well level

To avoid entry of water into Turbine

C

Fuel handling

 

1

Belt conveyor trips on operation of Zero speed switch (ZSS)

1-To avoid the further damage to the belt conveyor

2-To avoid system disturbance & major damages to the conveyor structure

Note: ZSS operates when belt gets cut or slips on pulley

2

Belt conveyor trips on operation of belt sway switch (BSS)

1-To avoid swaying of belt

2-To avoid belt side edges damage

3-To avoid fuel spillage

3

Belt Pull cord Switch (PCS)

To stop the belt conveyor during emergency situations to avoid damages to the man & system

D

Boiler feed pumps

 

1

Pump trips on high bearing temperature

To avoid bearing damage & secondary system damage/disturbance

2

Pump trips on high bearing vibrations

To avoid bearing damage & secondary system damage/disturbance

3

Pump trips on low suction pressure

To avoid pump cavitation

4

Pump trips on high differential pressure

To avoid pump cavitation

5

Pump trips on high balance leak off pressure

To avoid further damages to the balance & counter balance discs

6

Pump trips on lower cooling water temperature

To avoid failure of pump's bearings & seal

7

Pumps trips on over load

To avoid damages to the pump internals

8

BFP trips on Deaerator level low

 

E

Boiler fans

 

1

Fan trips on high bearing temperature

To avoid bearing damage & secondary system damage/disturbance

2

Fan trips on high bearing vibrations

To avoid bearing damage & secondary system damage/disturbance

F

Motor

 

1

Motor trips on higher bearing temperature

To avoid bearing damage & secondary system damage/disturbance

2

Motor trips on higher winding temperature

To protect winding

3

Motor trips on over load

To protect winding

G

Generator

 

1

Over current protection

Protects the generator from over load, short circuit & earth faults

2

Earth Fault Protection

To protect the generator from earth faults & short circuits

3

Generator Differential Protection

To protect the generator from winding faults or unbalance currents in winding

4

Reverse Power Protection

To avoid motoring of generator during reverse flow of power to generator from other source

5

Low Forward Power Protection

To protect the generator running under load

6

High bearing temperature

To avoid bearing damage & secondary system damage/disturbance

7

High bearing vibrations

To avoid bearing damage & secondary system damage/disturbance

8

Higher winding temperature

To protect winding

9

Higher core temperature

To protect core

10

High air temperature

To limit winding temperature

 

Other protections

 

11

High & Low voltage protections

 

12

High & low frequency protection

 

13

Rotor earth fault protection

 

14

Loss of excitation

 


Read Power plant standard operating procedures

 Classes of STG Trips:

Class A trip

This involves serious electrical faults and is considered to be the most dangerous in terms of the shock on the unit. Since it involves serious electrical faults, connections from both generator and the EHV bus is immediately switched off to limit the damage at the fault point and also to isolate the healthy system. Hence the whole unit need to be tripped.

Class B trip

Class B primarily relates to mechanical problems. This results in tripping of turbine followed by generator.

Class C


Read Generator and Turbine inter tripping

Class C involves basically external system related problems like frequency, overvoltage etc. This does not involve instant tripping of the unit. CPP unit operates on house load

Classes of Generator protections

SL NO.

CLASS A

CLASS B

CLASS C

1

Generator Differential Protection

Loss of Excitation

Under Frequency

2

100% Stator Earth Fault Protection

Rotor Earth Fault

 Over Frequency

3

Generator Over Voltage Protection

Over excitation

Pole Slipping Protection

4

95% Stator Earth Fault Protection

 

Tripping of unit transformer

5

Starting Over Current Protection

 

 

6

Over fluxing Protection of Generator

 

 

7

  Differential Protection of GT

 

 

8

Buchholz Relay of GT

 

 

9

Trip from oil & winding temperature of generator transformer

 

 

 

These protection when operated initiate tripping of Generator Circuit Breaker, Field Circuit Breaker, Generator Transformer Circuit Breakers & Unit Transformer LV Circuit Breakers and turbine.

This results in tripping of turbine followed by generator.

Class C involves basically external system related problems like frequency, over voltage etc. This does not involve instant tripping of the unit. 


 Why do the Boilers explode


What do you mean by Turbine supervisory system???


Questions & Answers on Power Transformers

   

1-What do you mean by power transformer?

It is a static Electro-magnetic machine which transforms alternating current from one AC voltage to another AC voltage at same frequency & at the same apparent power (KVA).

2-What is the principle of Power transformer operation?

Power transformers work on the principle of electromagnetic induction. Which states that, EMF induced in a closed conducting circuit when the magnetic flux linking with that circuit changes in time.

3-What is the main function of a power transformer?

Generally it is used for stepping up or stepping down of Voltage to desired level

4-What are the various parts of power transformer?

General arrangement of Power Transformer


  • Casing
  • Core
  • Primary & secondary windings
  • LV & HV bushings
  • Radiators & cooling system
  • Conservator
  • Breather
  • Protection devices like Buchholz relay, relief valves, temperature sensors

5-Why does the oil conservator is placed at higher elevation?

Oil conservator is placed at a slightly higher level than that of the tank. It accommodates the contraction & expansion of oil level during lower & higher loads respectively. At higher load, oil temperature rises and hence level in the conservator rises & at lower load, oil temperature decreases & level in conservator drops down.

The above cushioning in oil level is by cushioning bag present in conservator, the air cushion in the conservator permits expansion & contraction of the oil tank without contact with moist air.

6-What is the function of breather in Transformers?

Breather is installed in a pipe from conservator. One end is connected to air cushion bag in the conservator, other end is connected to external air.

Breather is filled with dry silica jel, generally pink in colour. When oil in the conservator rises, air is let out through the breather. During low load when oil level in the conservator decreases, air is sucked into the cushion bag through breather. Silica jet absorbs the moisture & lets only dry air. Wet silica jells are blue in color.

7-What is the function of Buchholzs relay?



It is fitted in the pipe between conservator tank & main oil tank. It operates by gas during arcing or short circuits

8-What are the various cooling methods employed in Power transformers?

  • ONAN: Oil Natural & Air Natural
  • ONAF: Oil natural & Air forced
  • OFAF: Oil forced & Air forced
  • OFWF: Oil forced & water forced
  • AN: Air natural

9-What is the function of Pressure relief valve in Transformers?

It is fitted on tank to vent out the gases formed in oil & hence protects the transformer from explosion

10-What do you mean by small, medium & large transformers?

  • Small transformers: < 5 KVA
  • Medium transformers: 5 to 500 KVA
  • Large transformers :> 1 MVA

11-What do you mean by core type transformer?

In this type of transformers, winding surround the limbs of core

12-What do you mean by the Shell type transformer?

In this type of transformers, core surrounds the major portion of the windings

13-What is the relation between voltage, current and number of turns on coils in a transformer?

We have following relation:

Vp/Vs = Np/Ns = Is/Ip

Where, Vp and Vs are Voltage on primary and secondary side.

Np and Ns are No. of turns on primary and secondary coils.

IP and Is are Primary side current and secondary side current of a transformer.

14-A 10 KVA single phase 2200/220 Volts Transformer has 60 turns on secondary side, then calculate Primary current, no. of turns on coil and secondary side current.

Given that,

Vp = 2200 V

Vs 200 V

Ns 60

Transformer rating 10 KVA

We know that Vp/Vs = Np/Ns

Np 60 X 2200/220 = 600 turns

Further, KVA rating of transformer is (Vp Ip)/1000 and (Vs X Is)/1000

10 2200 Ip/1000

Therefore, current on primary side Ip 10 X 1000/2200 = 4.54 Amps

Similarly current on secondary side Is 10 1000/220 45.45 Amps

15-A Power transformer’s input voltage is 11 KV & output voltage is 110 KV,then calculate the number of turns on secondary side, if Primary side winding has 25 turns

We have

V1 / V2 = N1 / N2

11 / 110 = 25 / N2

N2 = 250 Nos

16-A power transformer input voltage is 11 KV & output voltage is 220 KV, then calculate the secondary side current if it has 2300 Amps of current on primary side?

We have

V1 / V2 = I2 / I1

11 / 220 = I2 / 2300

I2 = 115 Amps

17-What are the materials of composition of lamination cores?

Laminations are thin 0.2 to 0.3mm thick silicon sheets. These are further coated by varnish or insulation oxide.

18-Why do the laminations are made up of silicon steel sheets?

Higher the silicon content in steel sheets increases the resistivity & reduces the eddy current losses. But silicon percentage is restricted up to 3.25% max.to avoid brittleness of sheet.

19-What are the various tests carried out on Transformers?

Meggering

  • IR value measurement
  • Magnetic balance test
  • Magnetizing current test
  • Capacitor measurement
  • Ratio test
  • Vector group test
  • Induced voltage test
  • Temperature rise test
  • BDV test
  • No load current test
  • No load loss test

20-What is the significance of magnetizing current test?

  • This test is performed to locate the defects in the magnetic core structure,
  • To detect the shifting of winding, failure
  • To detect the problems in tap changers

21-What are factors which affect IR value of transformer?

  • Surface condition of the terminal bushings
  • Quality of oil
  • Quality of winding insulation
  • Temperature of oil
  • Duration of application & value of test voltage

22-What are the various protections given for power transformers?

  • Differential protection for earth faults
  • High oil temperature & high winding temperature protection
  • Over current protection
  • Over fluxing protection
  • Protection against fire
  • Protection against lightening
  • Buchholz relay for gas & arcing protection
  • Pressure relief valve

23-On what factors transformer loading depends on?

  • Transformer current
  • Winding temperature
  • Oil temperature

24-What are the effects of Transformer over loading?

Overloading results into

  • Cellulose insulation becomes mechanically weak & resulting in winding failure
  • Oil gets rapidly oxidized

25-What is the function of tap changer in Power transformers?

Tap changer is for adjusting the secondary voltage

26-What do you mean by No-load current?

The current flowing through the terminal of a winding when rated voltage is applied at rated frequency the other winding being left open circuited

27-What do you mean by no-load losses in Power transformers?

The active power absorbed when rated voltage at rated frequency is applied to the terminals of one winding, with other winding being left open circuited

28-What parameters of Transformer oil are tested yearly?

Transformer oil qualities are recommended as per IS-335-1963

  • Density
  • Kinematic Viscosity
  • Flash Point
  • Pour point
  • Neutralization Number (Acidity)
  • Sludge
  • Moisture content
  • Dissolved Gas Analysis (DGA)
  • Dielectric Dissipation test
  • Interfacial tension
  • Break down Voltage

29-What is the importance of Transformer BDV test?

BDV test is done to detect moisture, dirt & conductive particles in the oil. The BDV value should be more than 50 KV

30-Briefly explain the BDV test of transformer oil?

This test applies an AC voltage of frequency 40 to 60 Hz through two polished electrodes having diameter 12.5mm to 13 mm with oil gap around 2.5 to 4.0 mm.Rise in voltage between the electrodes is at uniform rate of 2 KV/sec.Thus voltage is increased from zero to till breakdown.

The final value will be arithmetic mean of 6 consecutive tests

 

 

15-Emergencies in power plant operation

Most visited posts