Travelling grate Boilers, cold, warm and hot start up procedures






15-Emergencies in Power plant

BOILER COLD START UP PROCEDURE

  • Ensure DM water storage tank level normal and healthy condition of WTP for adequate water
  • Ensure availability of fuel quantity and power supply with DG backup.
  • Ensure trial runs (healthiness) of all equipment including fuel handling, ash handling / auxiliaries, motorized valves, actuators, control valves and PRDS controls are completed successfully.
  • Ensure that all interlocks / protection and controls are checked & taken in line.
  • Ensure expansion points are cleaned & tramps are in good condition.
  • Ensure Boiler manholes and flue gas path system manholes are boxed up.
  • Ensure availability of chemical dosing system and readiness of drum level gauge glass with illuminator assembly.
  • Ensure availability of cooling water, instrument air and service air.
  • Start the ACW pump, Instrument Air & Service Air Compressor.
  • Ensure all rotary air lock valves of modular bank hopper and economizer hopper gates are opened and then start RAVs.
  • Ensure healthiness of all dampers and keep them in open/close marked positions as and when required.
  • Open all air releases/vent valves in boiler drum and open super heater header drains and its vent valves.
  • Ensure all boiler bottom ring header drains, blow down valves and main steam stop valves including its bypass valves are closed.
  • Ensure Deaerator level normal. If level is low, make it normal through control valve by DM transfer pump.
  • Ensure oil level of bearings normal, minimum recirculation, balancing leak off valves & suction valves open, cooling water pressure normal.
  • Ensure sufficient suction pressure & suction differential pressure across strainer is normal.
  • Start BFP from control room. Ensure suction pressure, balancing pressure & discharge pressure normal. Bearing temperature & Vibrations normal. Ensure motor draws current normal & sound normal. Shut the BFP immediately if any abnormal condition and check thoroughly before restart.
  • Start water filling the boiler drum through 30 % control valve and maintain the drum level up to 30%.
  • Start the Ash handling plant prior to light up the Boiler. Then start all hoppers RAV.
  • Charge the hopper heaters, Insulator heaters of ESP prior to Boiler light up.
  • Start the purge air blower, collecting & emitting rapping motors prior to boiler light up.
  • Stack fire wood / baled bagasse inside the furnace for light up, put the fire and maintain the moderate temperature of furnace without fan by keeping suction damper & discharge damper of ID fan open.
  • Spread the fire throughout the furnace.
  • Raise the furnace temperature up to 150 °C to 250 °C.
  • After ensure the furnace temperature of 250 deg C, start ID, FD & SA. And maintain the furnace draft -2 to -10 mmwc, FD air discharge pressure by maintaining the rpm in the range of 10 to 15 %, SA air discharge pressure by maintaining the rpm in the range of 40 to 45 % with feedback of field supervisor.
  • Start screw feeder and then drum feeder including fuel feeding system (Fuel Handling System) and slowly rise the furnace temp by feeding fuel (maintaining the rpm of screw feeder and drum feeder in 20 % & 10 % respectively)
  • Maintain the steam drum level and if exceeds, maintain the level by giving IBD.
  • When drum pressure rises to 2-3 kg/cm2, close the drum air vents.
  • When drum pressure raises 5 kg/cm2, close all super heater vents, drains except secondary super heater outlet header vent & drain valves in crack opened condition. Open start up vent valve (5%) initially and increase the start up vent valve opening gradually according to steam pressure & temperature as per start up curve to allow the steam flow through SH.
  • At drum pressure of 5 kg/cm2, quickly give the blow down through IBD and furnace bottom ring header for 3 minutes.
  • Start HP & LP dosing and maintain recommended drum water parameters of boiler. Keep the CBD at minimum opening to maintain recommended residual PO4 & conductivity of drum water.
  • Check & record thermal expansion of boiler pressure parts and record the bearings temperature & vibrations of auxiliary equipment’s associated with Boiler.
  • Start & Stop the traveling grate as per requirement during light up and
  • Ensure sub merge belt conveyor for bottom ash disposal is in running condition.
  • Follow the cold start up curve and raise the pressure & temperature of Boiler as per the    curve. Start another ID, FD & SA fan and BFP as per requirement.
  • When boiler raises above pressure of 60 kg/cm2 & 350 deg C, charge the main steam line. Before charging the main steam line, open all the drains at 100 % and warm up vents at minimum opening and then open the MSSV bypass valve.
  • After ensured all condensate removed & colorless steam comes through drains, keep all the drains in crack position, then open main steam stop valve and close the bypass steam valve.
  • Charge the PRDS of pegging steam and charge the Deaerator. Maintain the PRDS pressure at 1.5 kg/cm2 and temperature at 120 deg C.
  • After getting the start permissive of ESP, charge the ESP.
  • Observe seal air pressure, conveying air vessel pressure of AHP is normal.

                   BOILER WARM START UP PROCEDURE

  • Start the DG set
  • Keep the boiler in hot box up.
  • Maintain the drum level accordingly.
  • After this give clearance to start the boiler.
  • Start the ash handling system accordingly
  • Ensure the de-aerator level.
  • Start ACW & compressor.
  • Start & regulate ID, FD & SA fans as per furnace draft.
  • Start fuel handling system.
  • Open start-up vent.
  • Start boiler feed pump.
  • Take fuel to boiler & Raise the pressure and temperature gradually warm start-up curve.
  • After reaching the pressure 25 kg/cm2 give blow down through ring headers.
  • After reaching the pressure 40 kg/cm2 and temperature 350deg c, open MSSV by pass valve and warm up the line up to TSSV.
  • Give clearance for vacuum pulling.
  • Slowly raise the pressure to 105 kg/cm2 and temperature to 540 deg C.

                 BOILER COLD START UP PROCEDURE

  • Check the availability of import power and start DG set.
  • Check the reason for tripping and after the analysis give the clearance to start the boiler.
  • Close the MSSV and keep boiler in hot box up.
  • Start the ACW and compressor.
  • Start the boilers feed pumps and maintain the drum level.
  • Start the ash handling system.
  • Observe seal air pressure, conveying air vessel pressure of AHP is normal.
  • Start ID, FD, SA fans as per the requirements.
  • Start the fuel feeding system and monitor the combustion feedback continuously.
  • After reaching the pressure 40 kg/cm2 and temperature 350deg c, open MSSV by pass valve and warm up the line up to TSSV.
  • Open the MSSV main valve.
  • Raise the pressure and temperature up to 105kg/cm2 & 545 deg C.
  • Give the clearance for rolling of the turbine.

 Read Steam turbine start up procedure

 Read Boiler Alkali Boil out procedure

Questions & Answers on Ash Handling Plant


Questions answers on cooling tower and calculations

 

1-What is the cooling tower (CT)?









Cooling tower is a large & robust heat exchanger used to reduce water temperature. Here air & water are mixed to reduce water temperature.

2-What is the function of cooling towers (CTs)?

  • Cools the circulating cooling water by extracting heat from water
  • Provides sump or surge for cooling water
  • Provides sump or arrangement for chemical treatment of water

3-What action does happen in cooling towers for reducing water temperature?

In cooling towers, water temperature is reduced by evaporating small amount of water naturally or mechanically. Here the heat present in water is rejected to atmosphere.

4-What are the various types of cooling towers used in power plants or chemical plants?

Natural draft cooling towers: These are tall & concrete made cooling towers, used for water circulation more than 50000 m3/hr

Mechanical draft cooling towers: Mechanical draft cooling towers use fans which suck or force the air for heat transfer.

5-What are the types of Mechanical draft cooling towers?

  • Counter flow induced draft
  • Counter flow induced draft
  • Cross flow induced draft

5a-Whar do you mean by counter & cross flow type cooling towers?

In counter flow, air flow & water falling directions are opposite to each other. Air enters from bottom to the top & water falls from top to the bottom.

In cross flow, air & water flow intersect, where air is blown horizontally & water flows vertically.

6-What are the other accessories of cooling towers?












  1. Sump
  2. Fore bay (cold water basin)
  3. Louvers
  4. Fans
  5. Drift eliminators
  6. Fills (Splash type & film type)
  7. Water distribution pipe lines
  8. Water nozzles
  9. Hot water basin
  10. Cooling water inlet & out lines
  11. Sump over flow & drain lines
  12. Sluice gate valve

7-What is the function of drift eliminators?

Drift eliminators fitted at the top of the tower capture water droplets trapped in air & water vapour mixture.

Drift is water that is carried away from the tower in the form of droplets with the air discharged from the tower.

8-What is the function of fills?

Fills situated just below the drift eliminator facilitate the heat transfer by maximizing the contact between air & water particles.

9-What are the two types fills used in cooling towers?

Splash type fills & Film type fills

Splash type fills: Are made up of plastics or wooden materials. These are fitted on splash bars .These splash break the water particles into small particles to increase the surface contact area with air.








Film type fills: These are made of plastic materials, the water particle falling on this forms small films, which increases heat transfer by making contact area larger.

Films fills may be flat, corrugated or horizontal type. Film type fills are more efficient than splash type fills










10-What is the function of lowers in cooling towers?

  • Lowers equalize the air flow into the fills
  • Retain the water falling within the sump of tower

11-What are the different types fans used in cooling tower?

  • Centrifugal fans for forced type
  • Propeller type for both induced & forced draft cooling towers



12-What type of blades used for propeller type fans?

Fixed pitch & variable pitch blades.

13-What is the material of construction of CT blades?

Generally Blades are of Aluminium or FRP (Fibre Reinforced Plastic)

14-Why do the cooling towers used in power plant

Cooling towers used for cooling

  • Generator air
  • Turbine lube oil
  • Reciprocating air compressor air
  • Boiler feed pumps bearings
  • Coal feeding system bearings
  • Ash handling domes & surge vessels
  • Air conditioners refrigerant

15-Why do the Mechanical draft cooling towers some time installed inside the buildings?

Because, mechanical draft cooling towers do not depend on atmospheric air

16-Briefly explain the cooling tower working procedure?

Hot water from various plant appliances is sent to cooling tower hot basin, where water distributed into various cells through pipe lines & water is being sprayed on fills. While falling downward water, comes in contact with cold air that was sucked, forced or naturally drafted by cooling tower. Thus exposure of hot water to cold air converts water vapour & the remaining water falls down in sump for recirculation.

The vapour is pulled by fans & expelled to atmosphere. Such loss of water due to vapour is added through fresh same quality make up water.

17-What is the function of sluice valves















Sluice valves are used to isolate the cooling towers sumps of different cells for cleaning or any maintenance purpose.

18-What are the various pipe lines connected to cooling towers?

  • Cooling water pumps suction line
  • Cooling water return lines
  • Cooling water make up lines
  • Cooling water pumps recirculation lines
  • Side stream filter outlet lines
  • Cooling water cell drain & over flow lines
  • Cooling water corrosion analysis line










19-What is the blade angle of CT fans usually set?

It is in the range of 12 to 140















20-What is the function of fore bay in cooling tower?

It is a water sump or canal provided to connect the different cells & to provide suction water to cooling water pumps.

21-What are the reasons for drift loss in cooling towers?

  • Improper designed cooling towers & their lowers
  • Damaged drift eliminators
  • Improper set of CT fan blade angles

Note: 

  1. Natural draft Cooling towers have more drift losses around 0.3 to 1%
  2. Cooling towers without drift eliminators have drift losses around 0.1 to 0.3%
  3. Induced CT with drift eliminators has drift losses around 0.005%

22-For which type fill height required is very less?

Film type fills

26-Distinguish between cooling towers having film type fills & flash type fills

Sl No.

Film type fills

Flash type fills

1

Fill height required less

Fill height required more

2

Pump static head required is less

Pump static head required is more

3

Motor power consumption is less

Motor power consumption is more

 

27-What is the maximum speed of cooling tower fans for induced counter flow film type CTs?

It’s generally 125 rpm to 175 rpm

28-Define Range & Approach in cooling towers?

Range: It is the difference between cooling tower inlet and out let water temperature

Range = T2-T1

Where T1 = Cooling tower outlet cold water temperature in deg C

T2 = Cooling tower inlet hot water temperature in deg C

Approach: It is the difference between cooling tower outlet cold water temperature (T2 or Tc) and wet bulb temperature (Twb)

Approach = T2-Twb or Tc-Twb

29-Define the term cooling tower effectiveness?

CT effectiveness = Range X 100 / (Range + Approach)

30-How do you measure the Cooling tower capacity?

It is measured in terms of heat rejected.

Heat rejected = Mass of circulating water X Specific heat of water Cp X Range

40-What do you mean by evaporation loss in cooling towers?

It is the evaporation of circulating water during cooling duty

Evaporation loss = 0.00085 X 1.8 X Water circulation rate X Range            

1.8 is taken as 1.8 m3 of water is rejected on every 10,00000 kcal heat rejected

Evaporation Rate is the fraction of the circulating water that is evaporated in the cooling process.

A typical design evaporation rate is about 1% for every 12.5°C range at typical design conditions.

It will vary with the season, in colder weather there is more sensible heat transfer from the water to the air, and therefore less evaporation.

The evaporation rate has a direct impact on the cooling tower makeup water requirements.

41-What do you mean by cycles of concentrations (COC) in CT

It is the ratio of dissolved solids in circulating cooling water to the dissolved solids in makeup water

It is given as

COC = Conductivity in circulation water / Conductivity in makeup water

OR

COC = Chloride in circulation water / Chloride in makeup water

42-How do you calculate the blow down loss in CT?

Blow down loss = Evaporation loss / (COC-1)

43-Heat rejection of a counter flow induced draft cooling tower is 57000000 kcal/hr & circulation rate of cooling water is 5500 m3/hr. Calculate the cooling water temperature differences (range)

We have Range = Heat load (heat rejection) / Circulation rate X Specific heat Cp

Range = 57000000 / (5500 X 1000 X 1)

Range = 10.36

44-Calculate the approach of cooling tower having effectiveness 75% & cooling water temperature difference 7 deg C

We have,

Effectiveness = Range / (Range + Approach)

0.75 = 7 / (7+Approach)

Approach = 2.33

45-Inlet & outlet temperatures of circulating cooling water of a induced draft cooling towers are 38 deg C & 31 deg C respectively. The hygrometer shows 27 deg C wet bulb temperature, calculate the cooling tower efficiency.

We have,

CT effectiveness = Range X 100 / (Range + Approach)

Range = 38-31 = 7 deg C

Approach = 31-27 = 4 deg C

CT effectiveness = 7 X 100 / (7+4) = 63.63%

46-A cooling tower of circulation water flow 2500 M3/hr & temperature difference (range) 6 deg Calculate the heat load of a cooling tower

Heat rejected = Mass of circulating water X Specific heat of water Cp X Range

Heat load of cooling tower = 2500 X 1000 X 1 X 6 =15000000 kcal

47-A cooling tower having circulation water flow 3475 m3/hr & inlet and outlet circulating water temperatures are 36 & 29 deg C respectively. Calculate the evaporation loss in %

We have,

Evaporation loss = 0.00085 X 1.8 X Water circulation rate X Range              

Range = 36-29 = 7 deg C

Evaporation loss = 0.00085 X 1.8 X 3475 X 7 = 37.21 M3/hr

% of evaporation loss = 37.21 X 100 / 3475 =1.07%

48-Calculate the blow blown loss of cooling tower, if its evaporation loss & COC are 0.8% & 5 respectively.

Blow down loss = Evaporation loss X 100 / (COC-1)

Blow down loss = 0.8 / (5-1) =0.2%

49-Calculate the COC of a cooling tower if Chloride & conductivity of circulating water are 147 ppm & 550 micS/cm and that of makeup water are 33 ppm & 90 micS/cm respectively

We have,

COC = Chloride in circulation water / Chloride in makeup water = 147 / 33 =4.45

COC = Conductivity in circulation water / Conductivity in makeup water = 550/90 =6.11

49- A cooling tower having circulation water flow 6400 m3/hr & inlet and outlet circulating water temperatures are 39 & 31 deg C respectively. Calculate the evaporation loss & blow down loss in %. Consider chloride level in circulating water & make up water are 155 ppm & 35ppm respectively.

We have

Evaporation loss = 0.00085 X 1.8 X Water circulation rate X Range              

Range = 39-31 = 8 deg C

Evaporation loss = 0.00085 X 1.8 X 6400 X 8 = 78.34 M3/hr

% of evaporation loss = 78.34 X 100 / 6400 =1.22%

Blow down loss = Evaporation loss X 100 / (COC-1)

COC = Chloride in circulation water / Chloride in makeup water

 COC = 155 / 35 = 4.4

Blow down loss = 1.22 / (4.4-1) =0.36%

48-A induced draft CT having cooling water circulation flow 7200 M3/hr, Calculate the quantity of makeup water required  in a day. Assume evaporation, blow down & drift losses 0.9%, 0.2% & 0.003% respectively.

We have,

Evaporation loss = 7200 X 0.9/100 =64.8 M3/hr

Blow sown loss = 7200 X 0.2/100 =14.4 M3/hr

Drift loss = 7200 X 0.003/100 =0.00216 M3/hr

Total make up water quantity = 64.8 + 14.4 + 0.00216 =79.2 M3/hr

49-A Mechanical cooling tower operating at 5 COC is used to cool 8500 M3 of water required for the power plant auxiliaries from 37 deg C to 28 deg C at 24 deg C WBT.Calculate Range, approach, evaporation loss, blow down loss and make up water requirement.

We have,

1-Range = 37-28 = 9 deg C

2-Approach = 28-24 = 4 deg C

3-Evaporation water loss = 0.00085 X 1.8 X 8500 X 9 =117.045 M3/hr

4-Blow down water loss =117.045 / (5-1) =29.26 M3

5-Make up water = 117.045 + 29.26 = 146.30 M3/hr

50-What do you mean by CT hold up of volume?

It is the operating water volume of CT including all cells & fore bays.

51-How do you decide the cooling tower hold up capacity?

Generally it is 25% of the circulating flow for safe operation.

That is if cooling tower required circulation water flow is 5000 M3/hr, then its hold up volume will be

5000 X 25 / 100 = 1250 M3

52-What do you mean by liquid & gas ratio (L/G) in cooling towers?

It is the mass ratio of water (Liquid) flowing through the tower to the air (Gas) flow. Each tower will have a design water/air ratio.

An increase in this ratio will result in an increase of the approach, that is, warmer water will be leaving the tower.

L/G = (h2-h1)/(T2-T1)

L/G = liquid to gas mass flow ratio (kg/kg)

 T2 = hot water temperature (°C) 

T1 = cold-water temperature (°C) 

h2 = enthalpy of air-water vapor mixture at exhaust wet 

 h1 = enthalpy of air-water vapor mixture at inlet wet-bulb temperature.

53-What are the types of heat transfer that occur in cooling towers?

Heat transfer in cooling towers occurs by two major mechanisms:

  1. Sensible heat from water to air (convection)
  2. Latent heat by the evaporation of water (diffusion).

54-What are the various chemicals used in cooling water treatment?

SL No.

Chemicals

Use

1

Scale inhibitors

To prevent scaling

2

Corrosion inhibitor

To prevent corrosion

3

Bio dispersant

Bio-Dispersion

4

Sulphuric acid

To maintain pH level of water

5

Chlorine granules

To kill the bacteria

6

Oxidising biocides

Controls bio fouling in heat exchangers like Condensers, oil coolers)

7

Non- Oxidising biocides

To kill microorganisms

 

55-What are the various tests conducted for cooling water in CT?

  • pH
  • Conductivity
  • Hardness
  • Chloride as cl
  • Phosphate
  • Silica
  • Iron as Fe
  • Turbidity
  • COC
  • TBC (Total bacteria count) test
  • SRB (Sulphur reducing bacteria) test
  • Corrosion coupon test

 

How to improve Thermal power plant efficiency??











Power plant efficiency is the ratio of output X 100 / Input

Power plant performances are measured in terms of heat rate. Heat rate is the amount of heat required to generate 1 KWH of power.

So power plant efficiency = 860 X 100 / Heat rate.

Where, 860 is heat value of 1 KWH power (1 KW = 860 kcal)

So it is clear that, to increase the power plant efficiency, we need to reduce the heat rate.

Thermal Power plant heat rate can be calculated from the following formula

THR (Thermal PP) = Fuel consumption X GCV / Power generation

Again, from the above formula it is clear that, heat rate of thermal power plants can be reduced by reducing the fuel consumption & increasing the power consumption.

And also heat rate of the process plant is calculated as,

THR (Process plants) = ((Fuel consumption X GCV + Heat content in DM water make up + Return condensate from process plants) –(Heat content in steam given to process plants)) / Power generation.

From the above formula, it is clear that, heat rate of the process plants can be reduced by

1-Reducing fuel consumption

2-Reducing DM water consumption

So to reduce heat rate of any power plant, need to concentrate on following areas.










                                    Buy Now


A-Reduction of fuel consumption of steam generators (Boilers):

Increase in fuel consumption is the major reason to increase plant heat rate & hence reduction of power plant as well as Boiler efficiency.

Need to exercise on following areas to reduce fuel consumption

1-Use of high GCV fuel (as per design):

Fuel consumption = Steam generation X (Steam enthalpy-Feed water enthalpy) / (Boiler efficiency X Fuel GCV)

By looking at the above relation, Boiler fuel consumption reduces on

a-Using high GCV fuel

b-Operating the Boiler at rated pressure & temperature

Please note that, For every 100 kcal/kg increase in GCV of coal, boiler (TG) efficiency increases by 0.36% and vice versa.

 

2-Reduction of use of excess air:

Excess air more than required leads to heat loss due to dry flue gas. Excess air can be reduced by

a-Selecting low moisture fuel

b-Optimum GCV fuel

c-Selecting the fuel with optimum hydrogen & ash contents

d-Operating the Boilers with non-competent persons

e-Wrongly tuned air & fuel mixture

F-Absence of Oxygen analyser at Boiler outlet ducts. Excess air cab ne monitored by O2 analysers & accordingly air can be controlled.

Please note that,

  • For every 5% increase in excess air for bagasse, boiler efficiency decreases by 0.18% and vice versa.
  • For every 1% increase in bagasse moisture, boiler efficiency reduces by 0.27% and vice versa.
  • For every 0.5% increase of Hydrogen in bagasse, boiler efficiency decreases by 0.8–1% and vice versa.

3-Redution of unburnts in ash.

  • Unburnt in ash is due to improper combustion
  • Low GCV & high ash & moisture in fuel
  • Improper operation of the Boiler

Unburnt in the ash can be reduced by

  • Selecting required quality of fuel having optimum ash & moisture
  • Maintaining proper excess air. Less excess air for high moisture fuel may lead to improper combustion.
  • Achieving 3Ts of combustion (Temperature, Turbulence & Time)
  • Operation of the Boilers by competent operators
For more information read; 10-tips to reduce Boiler LOI

4-Maintaining feed water temperature as per design

On every 6-8 degree C rise in feed water temperature, fuel consumption of the boiler reduces by 1%.

Refer below formula

Fuel consumption = Steam generation X (Steam enthalpy-Feed water enthalpy) / (Boiler efficiency X Fuel GCV)

Feed water enthalpy increases as its temperature increases.

Feed water temperature can be increased by increasing by adopting regenerative cycles (use of HP & LP heaters)

5-Other exercises to reduce boiler fuel consumption are;

a-Reduction of Boiler outlet flue gas temperature

b-Optimizing Boiler blow downs

c-Reducing convective & radiant heat losses

d-Operating soot blowers regularly to remove heating surface external scales

e-Use of quality water to avoid internal scaling

f-Operating the Boilers at maximum loads (80 to 100% of MCR)

g-Arresting all flue gas, air & steam leakages in the Boilers

Read 16-Perfect reasons for more fuel consumption of Boilers

B-Reduction of steam consumption by Steam Turbines (prime mover)

More steam consumption by steam turbines to generate unit power leads to more het rate of Turbine as well as plant. So it is utmost important to reduce steam consumption.

Following actions needs to take to reduce steam consumption for generating unit power.

  • Maintaining designed vacuum in steam condensers. Operating the Turbines at lower vacuum results into more specific stem consumption
  • Operating the Turbine at maximum possible load
  • Operating the Turbines at rated pressure & temperature
  • Carrying out of STG maintenance as per OEM schedule. More clearance in labyrinth seals lead to high exhaust temperature & reduction in vacuum
  • Regular maintenance of steam jet ejectors & vacuum pumps
  • Maintaining proper temperature & pressure at bleed steam lines
  • Improving the cooling tower efficiency

C-Reduction of losses in steam lines & reuse of trap/drains condensate

Arresting of steam losses through leakages, drains & traps. And installing drain/trap condensate recovery system to improve cycle efficiency.

For example loss of 1000 kg of condensate at temperature 80 deg C leads to fuel (coal) consumption of

Assumptions: Atmospheric temperature 25 deg C, Fuel GCV 4500 kcal/kg & Boiler efficiency 80%.

 

Mf = 1000 X 1 X (80-25)/(Boiler efficiency X Fuel GCV)

Mf =1000 X 1 X 55 / (0.75 X 4500) = 16.3 kg of coal

Other losses include

Optimization of deaerator vent steam flow.

D-Other miscellaneous

  • Carrying out regular maintenance of traps & drain valves to avoid passing & leakages
  • Applying insulation to all hot uninsulated lines
  • Incorporating VFD drives to fuel feeding system, Boiler fans, cooling water pumps & cooling tower fans for controlling operation & to use resources as per requirement
  • Selecting the competent operation & maintenance team
  • Conducting regular trainings to the field team
  • On job trainings & tool box talks will help to optimize the resource utilization & knowledge up gradation for proper operation
  • Selection of proper equipments & system as per plant suitability
  • Adopting all advanced automation in plant operation

 

 For related articles read;

Power plant & calculations


Boiler calculations for BOE exam

 

 

15-Emergencies in power plant operation

Most visited posts