Skip to main content

Chain conveyor troubleshoot guide

  Problem Identification & Corrective Action Sl No. Problem Potential Cause Solution 1 Chain rises off from sprocket 1.Excess chain slack. 2.Excess wear at the bases of sprocket teeth. 3.Excess chain extension. 4.Foreign material stuck to the bases of sprocket teeth. 5.Reverse rotation of conveyor 6.Uneven chain tightening of chain 1.Adjust the amount of slack equally at both sides. 2.Carryout hard facing of the sprockets 3.Replace the elongated chain parts. 4.Remove the foreign material from the bases of the teeth. 5.Avoid reverse rotation of the conveyor when chain tightened is uneven 2 Chain separates poorly from the sprocket. 1.Sprocket misalignment. 2.Excess chain slack. 3.Excess wear at the bases of sprocket teeth. 4.Uneven chain tightening of chain 1-Adjust alignment. 2-Adjust the amount of slack.

Why do the vibrations occur in machines???


What do you mean by the term VIBRATION?
A periodic motion of the particles of an elastic body or medium in alternately opposite directions from the position of equilibrium when that equilibrium has been disturbed.
Why do the VIBRATIONS occur in machines?
Vibrations in the machine due to:
  • Misalignment of the driver & driven equipments
  • Bearing failure or more clearance in bearing
  • Unbalance in machine
  • Loose parts in machine
  • Loose foundation bolts
  • Lack of lubricant
  • Low viscosity or high temperature of lubricants
  • Bent shaft or more run out of shaft
  • Over loading of machine
  • Operation of machine in critical speed band
  • Wrong design of machine or its parts
  • Wrong installation of machine & accessories
 What are the forces responsible for vibrations in a machine?
Three basic types of forces which cause vibrations in a machine:
  • Impact – loose parts, hammering in a piping system, rolling element in a bearing hitting a spall.
  • Periodic – repetitive force such as unbalance or misalignment.
  • Random – varies with time, for example, turbulence in piping, pump cavitations.
Each type of force produces a different reaction in the machine.
What are the effects of VIBRATION on machine?
  • Bearing failure
  • Coupling failure
  • Machine parts failure
  • Internal rubbing & seizing related problems
  • More lubricants consumption
  • More power consumption
  • More noise
  • Machine is required to run at lower loads & hence lesser machine efficiency
  • Eventually machine will fail

If a machine has higher vibration in only vertical/horizontal/axial direction then what does it indicate?
  • If there is more vertical vibration and other direction vibrations are minimum, then indicates looseness in machine components.
  • If there is more horizontal vibration and other direction vibrations are minimum, then indicates unbalance of rotating part.
  • If there is more axial vibration and other direction vibrations are minimum, then indicates misalignment.

Methods of Vibration measurement:
In power plants, generally equipments vibrations are measured in displacement & velocity
Let us discuss on the methods of vibrations measurement
1-Displacement amplitude:
Displacement amplitude measures the distance the vibrating part travels in one direction from a reference position during oscillations. (Note that the peak-to-peak displacement value, which measures total travel in both directions, is sometimes used.) This vibration measurement is important because vibrations with high displacement amplitude can cause machine components to exceed their yield point and experience catastrophic failure. Displacement measurements are typically used when vibration frequencies are low.
2-Velocity amplitude
Velocity amplitude measures the speed of the oscillation. This measurement is typically considered the industry standard for evaluating the condition of a machine based on its vibrations; because it takes into account both vibration frequency and displacement. (Recall that velocity is the rate of change of displacement.) In fact, ISO standards refer to velocity amplitude when specifying the severity of machine vibration. Velocity amplitude can be expressed in terms of peak value or, more often, in terms of the root mean square (RMS) value, which is an indicator of the vibration energy.
3-Acceleration amplitude
Acceleration amplitude is directly related to the force imparted by the vibration and is especially useful for assessing the likelihood of fracture for equipment that rotates at high speed. The high forces associated with acceleration can also cause lubrication breakdown, which can lead to excessive wear, heat, and premature failure. Acceleration is typically measured in “g,” or multiples of earth’s gravitational acceleration.
Units of vibrations measurement:
  • Displacement: mm, microns, mils
  • Velocity: mm/sec., inch/sec.
  • Acceleration: mm/sec2.
How do you avoid machine VIBRATIONS?
Vibrations can be avoided by
  • Running the machine/equipment at or below the rated load
  • Following preventive maintenance regularly
  • Following Condition based maintenance (CBM) regularly
  • Replacing worn-out parts timely
  • Implementing proper design & installation methods
  • Following lubrication schedule timely with correct quantity & quality lubricants
  • Following precision alignment (Rim & Face type) method
Relation between displacement, velocity & acceleration & their conversions

Velocity = (2pi X RPM/60) X Displacement (microns peak-peak)

Acceleration = (2pi X RPM/60) X Velocity (mm/sec. pk)

Acceleration = 4 pi X (RPM/60) X Displacement (microns pk-pk)
What is the critical speed of a machine? On what factors critical speed of a machine depends?
Critical speed of a shaft is the condition, where the number of natural vibrations or natural frequency equals the shaft speed in rpm.
At this speed rotating shaft becomes dynamically unstable and vibrations occur.
Critical speed depends on,
  • Shaft speed
  • Distance between the supports
  • Type of support

Guidelines for selection & installation of machine foundations:
  • For centrifugal machines, Mass of the foundation = 3 X Mass of the machine
  • For reciprocating machines, Mass of the foundation = 5 X Mass of the machine
  • The top of the foundation block should be at least 12” above the finished floor level
  • The width of the foundation should be 1.25 to 1.5  X Vertical distance from the base to the machine centre.
Thumb rules for steam Turbine displacement vibrations measurement:
  • Normal vibrations in microns = 2400 / √Turbine speed in RPM
  • Alarm vibration in microns = 4500 / √Turbine speed in RPM
  •  Trip vibrations in microns = 6600 / √Turbine speed in RPM





Comments

Post a comment

Hi all,
This article is written based on practical experience..If liked, share with others, or any suggestions leave in comment box.

Frequently visited posts

Boiler feed pumps (BFP) questions & answers for interview

Boiler feed pumps (BFP) questions & answers for interview: 1-What is the function of Boiler feed pumps (BFP) in power plant? Functions: To supply the feed water to boilers To conduct the Boiler hydraulic tests To supply the desuperheating & attemperator water required for process steam lines & boilers respectively TOP-6 BEST POWER PLANT O&M BOOKS Boiler calculations for Boiler operation engineer (BOE) exam Viva Questions & answers for preparation of BOE exam & interview  2- What are the type of prime movers (drives) used for BFPs? Prime movers: LT drive (415 V) HT drive (11 KV) Turbo drive (Steam driven) 3-What are the auxiliaries associated with BFP? BFP auxiliaries Cooling water pump & lines Lube oil system ARC valve Mechanical seal flushing system Balance leak off line & its PRV 4-What are the various pipe lines connected to BFP? Questions & Answers on AFBC Boilers Suction pipe line D

Basic things you must know about nut bolts & spanners

A Bolt is a mechanical device which has head on one end of a body and a thread on the other end designed for fastening of two parts. Bolt is inserted into holes in assembly parts, it is mated with a tapped nut. Tension is normally induced in the bolt to compress the assembly by rotating the nut. This may also be done by rotation of the bolt head. A Screw is a headed and threaded bolt used without a nut. It is inserted into an internally tapped hole and tension is induced by rotation of the screw head. A Stud is a fastener with no head but it has threads at both ends of the shank. It, like a screw, has one end those screws into a tapped hole. A nut is used on the other end to create tension. Major diameter – largest diameter of thread (D) Minor diameter – smallest diameter of thread Pitch – distance between adjacent threads.       Boiler calculations for Boiler operation engineer (BOE) exam TOP-6 BEST POWER PLANT O&M BOOKS Types of nut bolts & Washer

Calculation of heat rate & efficiency of the power plant

Heat rate  is the amount of energy used by an electrical generator/power plant to generate one kilo Watt-hour (kWh) of electricity Heat rate (HR) = Heat input / Power generation =Kcal / Kwh Boiler calculations for Boiler operation engineer (BOE) exam Viva Questions & answers for preparation of BOE exam & interview Total heat input: The chemical energy available in the fuel (coal, biomass, oil, gas etc) is converted into heat energy in Boilers, this process is called as oxidation. The heat available in the fuel is measured in terms of Kcal/kg, KJ/kg or BTU units. The part of this fuel is used as useful heat and rest is lost as dry flue gas loss, moisture loss, un  burnt loss, radiation/convection losses etc.Based on Boiler efficiency this heat energy from the fuel is utilised, generally fuel heat utilisation is in the range of 60 to 90%. This heat generated in the boilers due to oxidation of fuel is used to generate high pressure & temperature steam. Thus genera

STEAM CONDENSER,VACUUM AND CALCULATIONS

A steam condenser is device or an appliance in which steam condenses and heat released by steam is absorbed by water. Heat is basically shell & tube type heat exchanger, where cooling water passes through tubes & steam condenses in shell. The functions of the condensers are: It condenses the steam exhausted from Turbine last stage Increase the thermal efficiency of the plant reducing the exhaust pressure and thereby reducing the exhaust temperature It maintains a very low back pressure on the exhaust side of the Turbine Supplies feed water to Boiler through deaerator TOP-6 BEST POWER PLANT O&M BOOKS Condenser related components: Hot well Cooling water inlet & outlet system Cooling tower Support springs or expansion neck Air Ejector system Condensate extraction system Cooling water tubes & tube sheet Vacuum breaker valve Safety valve or rapture disc Water box Air & water vent lines Types of steam condensers: Surface Co

22-Most likely Question Answer Guide for Boilers troubleshooting

TOP-6 BEST POWER PLANT O&M BOOKS 1.What are the emergencies that are expected to happen in boiler operation? Emergencies that can happen in boilers operation are: Boilers tubes leakage Failure of feed water control station Unbalanced draft in furnace Furnace explosion Blow down valve failure Feed water pumps failure Secondary combustion in super heaters and ESP Also read 16-Perfect reasons for increasing the fuel consumption of Boilers 2.List out the potential reasons for boiler tubes failure. Reasons for boiler tubes failure: Failure due to overheating Failure due to internal scales Failure due to aging Failure due to uneven expansion Failure due to ash and flue gas erosion Failure due to material defects Failure due to internal and external tube corrosion Improper or effected circulation due to opening/passing of low point drains 3.List down the sequential action taken after boiler tube leakage to restore the boiler. Following activities ar

Questions answers & calculation on Boiler draught & Chimney

1-What do you mean by the term draught? It is the pressure difference, which causes flow of gases to take places. 2-What is the function of draught in Boiler? To supply the combustion air required for proper combustion To evacuate the combustion products from the furnace or combustion chamber To evacuate the combustion products to the atmosphere So draught is the pressure difference between the inside the boiler and outside air. Inside the boiler pressure is due to combustion products (Flue gas) & outside pressure is due to fresh atmospheric air. 3-What are the different types of draughts used in power plant boilers? There are mainly two types of draughts. Natural draught & artificial draught Natural draught is generally obtained by Chimney Artificial draughts have main two types Steam jet: It is again classified into Induced & forced draught Mechanical draught: This is classified into Induced draught, forced draught & Natural draught

Boiler calculations for Boiler operation Engineer Exam (BOE)

  1-Oxygen percentage in Boiler outlet flue gas is 4.9%, then what will be the percentage of excess air? We have excess air EA = O2 X 100 / (21-O2)                                    EA = 4.7 X 100 / (20-4.7)                                    EA = 30.71% 2-Calculate the Oxygen level (O2) in flue gas, if excess air is 25% We have Excess air EA = O2 X 100 / (21-O2)                                    25 = O2 X 100 / (21-O2)                                    O2 = 4.2% 3-A Boiler’s combustion system requires 5.5 kg of air for burning 1 kg of fuel, then calculate the total air required for complete combustion if its flue gas has 4.1% of O2 We have, Total air = (1 + EA/100) X Theoretical air EA = O2 X 100 / (21-O2) EA = 4.1 X 100 / (20-4.1) = 25.78% Therefore Total air = (1 + 25.78/100) X 5.5 = 6.92 kg of air per kg of fuel burnt 4-A Coal fired boiler having total heating surface area 5200 M2 produces 18 kg of steam per square meter per hour of heating surface, then calculate the Boiler cap
close