Reasons for Priming, Foaming and carryover in Boilers

 

Priming:

1. What do you mean by the term Priming?

Priming means carryover of water particle in the steam

2. What are the reasons for Priming?

Reasons for priming;

  • Improper design of Boiler and steam drum
  • Maintaining high drum level
  • Boiler load fluctuation
  • Sudden load raise due to steam demand
  • Foaming in feed water
  • Miss operation of Boiler
  • Sudden lifting of Boiler safety valve or start up vent CV
  • More impurities in Boiler water

3. What are the impacts of Priming?

Impacts of Priming;

  • Lower steam efficiency
  • Water hammering
  • Super heater coil failure due to thermal shock
  • Turbine high vibration & blade failure

How do you avoid priming in Boilers?

Priming can be avoided by;

  • Proper operation of boiler
  • Maintaining drum level in between 45 to 55%
  • Avoiding foaming
  • Avoiding sudden load fluctuation
  • Proper designing of Boiler

Carryover:

What do you mean by the term carryover?

Carryover is the carryover of solid, liquid & gaseous contaminants with water and steam leaving the drum due to incomplete separation of water and steam in steam drum.

What are the major reasons for carryover?

Reasons for carryover;

  • Defects in steam and water separators
  • Foaming
  • Boiler load fluctuation
  • Higher drum level
  • Boiler steam drum construction defects

What are the effects of carryover on Boiler components?

Contamination in steam leads to deposition of solid scale on Super heater coils & control and regulating valves.

Foaming:

What do you mean by the term foaming?

Foaming is the formation of unbroken bubbles on the surface of the boiler water inside the boiler drum.

The bubbles may be in thin layer with few bubbles overlying each other or it may build up throughout the steam space.

What are the reasons for foaming?

  •  High suspended solid concentration
  •  High alkalinity concentration
  •  High dissolved solid concentrations in the boiler water
  •  Oil and organic contaminants in the boiler water
  • High impurities
  • High dosage of chemicals
  • High water level

How do you avoid foaming?

  • Timely blow down & maintaining desired water quality
  • Maintaining constant load on Boiler
  • Avoiding high water level
For more articles read Power plant and calculations

Combustion air in Boilers and related calculations

1. What do you mean by combustion air?

The amount of air required for complete combustion of fuel in furnace is called as combustion air. The efficiency of the Boiler or furnace depends on efficiency of combustion system.

2. On what parameters the requirement of combustion air depends?

Combustion air requirement depends on;

  • Type of fuel burnt
  • Type & quantity of its elemental constituents
  • Type of Boiler and furnace
  • Amount of moisture content in it

3. What is the relation between moisture content in the fuel & combustion air required?

Combustion air requirement increases as the moisture content in the fuel increases and vice versa

4. What is the relation between carbon & Hydrogen content in the fuel & combustion air required?

Combustion air requirement increases as the % of carbon & Hydrogen content in the fuel increase and vice versa.

5. What is the relation between oxygen content in the fuel & combustion air required?

Combustion air requirement decreases as the % of oxygen content in the fuel increases and vice versa.

6. Do content of sulphur & Nitrogen in the fuel affect combustion air requirement?

Increase and decrease in sulphur & Nitrogen content in the fuel does not affect much on combustion air requirement.

7. What is meant by total air of combustion?

The total air supplied to the Boiler combustion chamber is divided into two parts Primary air and secondary air.

Primary air supports the flame and takes part in the initial combustion process. The second part is called as secondary air. Secondary air is admitted into the furnace from top to create turbulence in furnace and to ensure complete combustion of the fuel.

8. What are the functions of Primary and secondary air in Travelling grate, pulverized coal fired and FBC Boilers?

In case of travelling grate Boilers Primary air is supplied below the grate to support flame & combustion stabilisation. And secondary air from top of the furnace as over fired air to create turbulence for complete combustion. And also secondary air is used to spread the fuel in furnace

In case of Pulverized coal fired Boilers, Primary air is used to carry the pulverized coal into the furnace.

In case of FBC Boilers Primary air is used to carry fuel and fluidisation. Secondary air is supplied above the bed to ensure complete combustion

9-What is meant by theoretical air & excess air in combustion?

Theoretical air: Amount of air required to burn the fuel. It is stoichiometric air, it does not ensure complete combustion.

Excess air: Amount of extra air given for complete combustion

10-Calculate the Theoretical air required to burn imported coal having carbon 55%, Oxygen 8.2%, Hydrogen 3.3% and sulphur 0.32% in it

Theoretical air is calculated by using below formula

Thair = (11.6 X %C + 34.8 X (%H2-%O2/8) + 4.35 X %S)) / 100

Thair = (11.6 X 55 + 34.8 X (3.3-8.2/8) + 4.35 X 0.32)) / 100

Thair = 7.18 kg/kg of fuel burnt

In the above formula, you can vary the % of Carbon, Hydrogen & Sulphur to observe changes in air requirement

11-How do you measure % of excess air supplied?

Excess air is generally measured from Oxygen analyser installed at the out let of Boiler (Economiser)

It is to be noted that, excess air & excess oxygen are not same. Air has around 21% of oxygen in it by volume. So, 100% excess air is roughly equals to 10.5% of oxygen.

12-What is the significance of excess air?

For combustion, if less air is supplied it leads to incomplete combustion forming CO instead of Co2. And if more excess air is supplied it leads to reduction of combustion efficiency by cooling the furnace & carrying the heat through flue gas.

So, it is important to adjust the air supply in such a way that complete combustion will take place without much extra air.

13-Calculate the % of excess air required if oxygen measured in flue gas at economiser outlet is 5.5%.

Excess air = O2% X 100 / (21-O2%)

Eair = 5.5 X 100 / (21-5.5)

Eair = 35.48%

14-Calculate the total air required for complete combustion of coal if Theoretical air supplied is 7.1 kg/kg of coal and O2 measured in flue gas is 6.4%

Actual or total mass of air supplied = (1 + Excess air / 100) X theoretical air

We have

Excess air = O2% X 100 / (21-O2%)

Eair = 6.4 X 100 / (21-6.4)

Eair = 43.84%

Actual or total mass of air supplied = (1 + 43.84 / 100) X 7.1

Actual or total mass of air supplied = 10.21 kg/kg of coal

15-How do you control the excess air?

Excess air is controlled by;

  • Optimizing the moisture content in the fuel
  • Improving combustion chamber performance
  • Auto control of fuel feeding
  • Continuously monitoring O2 content in flue gas
  • Incorporating auto combustion control
  • Incorporating VFD drives to ID, FD, PA & SA fans

16-Among Bagasse, coal and Natural gas, which fuel needs more excess air?

Bagasse, since it has more moisture content

17-A boiler has supplied 27% excess air, calculate % of O2 in flue gas

Excess air = O2% X 100 / (21-O2%)

27 = O2% X 100 / (21-O2%)

27 X 21 -27 X %O2 = 100 X O2%

567= 127 O2%

O2% = 4.46

Read Powerplant & calculations


Reasons for priming, foaming and carryover in Boilers

15-Emergencies in power plant operation

Most visited posts