### Why does vacuum in steam condenser reduce or drop??

1-High exhaust temperature: Vacuum drops or maintains at lower side due to high exhaust steam temperature flow into steam condenser. This high exhaust temperature is mainly due to 1-Operation of Turbine at lower loads 2-More clearance in labyrinth seals 3-Not operating exhaust hood sprays 4-More load on condenser 5-Breaking of ejector U loop 2-Low circulating cooling water flow Vacuum in condenser reduces due to inadequate cooling water flow through steam condenser. This is mainly due to; 1-Problems associated with pumps 2-Air pockets in pipe line 3-Leakages in cooling water line 4-Stuck of discharge valve of pump 3-High cooling water temperature at condenser inlet Higher cooling water temperature at condenser inlet results into reduction of vacuum due to poor heat transfer from steam to water 4-Poor heat transfer in condenser Very less or poor heat transfer in steam condenser reduces vacuum to very low level resulting into high exhaust temperature &am

### Calculated reasons for increase in Turbine specific steam consumption

1. Lower vacuum

Turbine consumes more steam, if vacuum in condenser is maintained on lower side.

Example:  Consider a 20 MW Steam Turbine having Inlet steam parameters 65 kg/cm2 & 490 Deg C & Vacuum maintained in condenser is -0.9 kg/cm2.

Calculate the steam consumption of turbine at vacuum -0.9 kg/cm2 & -0.85 kg/cm2

A-Steam consumption Q at -0.9 kg/cm2 to develop 20 MW power

P =Steam flow X( Enthalpy of inlet steam-Enthalpy of exhaust steam)/ 860

Enthalpy of inlet steam at inlet steam parameters =810 kcal/kg

Exhaust steam enthalpy at -0.9 kg/cm2 vacuum = 619 kcal/kg

Then, 20 = Q X (810-619)/860

Q1 = 90 MT

B- Steam consumption Q at -0.85 kg/cm2 to develop 20 MW power

Exhaust steam enthalpy at -0.85 kg/cm2 vacuum= 623 kcal/kg

Then, 20 = Q X (810-623)/860

Q 2= 90.9 MT

It is clear that, Turbine operating at -0.9 kg/cm2 vacuum consumes lesser steam as compared to turbine operating at vacuum-0.85 kg/cm2

2. Lower inlet main stream pressure& temperature

Turbine operating at higher main steam pressure consumes lesser steam as compared to turbines operating at lower pressure

Example: Consider a 20 MW Steam Turbine having Inlet steam temperature 490 Deg C & Vacuum maintained in condenser is -0.9 kg/cm2.

A-Inlet steam parameters: Pressure: 65 kg/cm2 & temperature 490 deg C , Enthalpy = 810 kcal/kg

Exhaust steam parameters P = 0.9 kg/cm2 & Enthalpy = 619 kcal/kg

Steam consumption of Turbine Q = P X 860 / (Enthalpy of inlet steam-Enthalpy of exhaust steam)

Q = 20 X 860 / (810-619)

Q1 = 90.05 MT

B-Inlet steam parameters: Pressure: 87 kg/cm2 & temperature 515 deg C , , Enthalpy = 818 kcal/kg

Steam consumption of Turbine Q = P X 860 / (Enthalpy of inlet steam-Enthalpy of exhaust steam)

Q = 20 X 860 / (818-619)

Q2 = 86.43 MT

It is clear that, Turbine operating at pressure 65 kg/cm2 & temperature 490 deg C consumes more steam as compared to turbine operating at 87 kg/cm2 & temperature 515 deg C

3. Higher extraction/bleed steam flow

Steam turbines consume more steam to develop same power on higher steam extraction as compared to lower extraction.

Example: A condensing & extraction steam turbine having Inlet steam flow 105 TPH at pressure 65 kg/cm2 & 490 Deg C & Vacuum maintained in condenser is -0.9 kg/cm2.

Here we can cross check the power generation by steam turbine by increasing the extraction flow keeping inlet steam constant.

A-Extraction pressure = 2 Kg/cm2 & Temperature = 150 Deg C, flow = 75 TPH, Exhaust steam to condenser = 30 TPH

Enthalpy of inlet steam, H1 = 810 kcal/kg

Main steam flow Q1 = 105 TPH

Enthalpy of extraction steam = H2 =660 kcal/kg

Extraction steam flow Q2 = 75 TPH

Enthalpy of exhaust team = 620 kcal/kg

Exhaust steam flow Q3 = 30 TPH

Power developed by steam Turbine P = (Q2 X (H1-H2) / 860) + (Q3 X (H1-H3) / 860 )

P = (75 X (810-660) / 860) + (30 X (810-620) / 860) = 19.7 MW

B- Extraction pressure = 2 Kg/cm2 & Temperature = 150 Deg C, flow = 65 TPH, Exhaust steam to condenser = 40 TPH

Enthalpy of inlet steam, H1 = 810 kcal/kg

Main steam flow Q1 = 105 TPH

Enthalpy of extraction steam = H2 =660 kcal/kg

Extraction steam flow Q2 = 65 TPH

Enthalpy of exhaust team = 620 kcal/kg

Exhaust steam flow Q3 = 40 TPH

Power developed by steam Turbine P = (Q2 X (H1-H2) / 860) + (Q3 X (H1-H3) / 860 )

P = (65 X (810-660) / 860) + (40 X (810-620) / 860) = 20.16 MW

It is clear that, Turbine power generation at same inlet main steam flow will increase as extraction flow gets decrease & vice versa

4. Higher pressure/temperature of extraction & bleed steam

Higher pressure/temperature of extraction & bleed steam leads to increased steam consumption to generate same power or power consumption reduces at same inlet flow.

Example: A condensing , extraction & bleed steam turbine having Inlet steam flow 105 TPH at pressure 65 kg/cm2 & 490 Deg C & Vacuum maintained in condenser is -0.9 kg/cm2

A-Bleed steam 10 kg/cm2 & Temperature 200 Deg C, flow =25 TPH, Extraction pressure = 2 Kg/cm2 & Temperature = 150 Deg C, flow = 60 TPH, Exhaust steam to condenser = 25 TPH

Enthalpy of inlet steam, H1 = 810 kcal/kg

Main steam flow Q1 = 105 TPH

Enthalpy of bleed steam = H2 =674 kcal/kg

Bleed steam flow Q2 = 25 TPH

Enthalpy of extraction steam = H3 =660 kcal/kg

Extraction steam flow Q3 = 60 TPH

Enthalpy of exhaust team H4= 620 kcal/kg

Exhaust steam flow Q4 = 20 TPH

Power developed by steam Turbine P = (Q2 X (H1-H2) / 860) + (Q3 X (H1-H3) / 860 ) +(Q4 X (H1-H4)/860)

P = (25 X (810-674) / 860) + (60 X (810-660)/860) + (20 X (810-620)/860)

P = 18.82 MW

B-Bleed steam 14 kg/cm2 & Temperature 260 Deg C, flow =25 TPH, Extraction pressure = 2.5 Kg/cm2 & Temperature = 170 Deg C, flow = 60 TPH, Exhaust steam to condenser = 25 TPH

Enthalpy of inlet steam, H1 = 810 kcal/kg

Main steam flow Q1 = 105 TPH

Enthalpy of bleed steam = H2 =704 kcal/kg

Bleed steam flow Q2 = 25 TPH

Enthalpy of extraction steam = H3 =669 kcal/kg

Extraction steam flow Q3 = 60 TPH

Enthalpy of exhaust team H4= 620 kcal/kg

Exhaust steam flow Q4 = 20 TPH

Power developed by steam Turbine P = (Q2 X (H1-H2) / 860) + (Q3 X (H1-H3) / 860) + (Q4 X (H1-H4)/860)

P = (25 X (810-704) / 860) + (60 X (810-669)/860) + (25 X (810-620)/860)

P = 18.43 MW

It is clear that, Turbine power generation reduces at higher extraction or bleed steam pressure &temperature

Note: Steam consumption of turbine increases if,

1-Bleed steam & extraction steam pressure increases

2-Bleed steam & extraction steam temperature increases

3-Bleed steam flow & extraction steam flow increases

4. Increase of exhaust steam temperature due to more clearance in labyrinth seals

Turbine steam consumption increases if exhaust steam temperature to condenser increases

Also read 16-Perfect reasons for increasing the fuel consumption of Boilers

Turbine oil and transformer oil standard testing parameters

1. kindly explain the reason behind why specific steam consumption increases at lower vacuum

Hi all,

### Boiler feed pumps (BFP) questions & answers for interview

Boiler feed pumps (BFP) questions & answers for interview: 1-What is the function of Boiler feed pumps (BFP) in power plant? Functions: To supply the feed water to boilers To conduct the Boiler hydraulic tests To supply the desuperheating & attemperator water required for process steam lines & boilers respectively TOP-6 BEST POWER PLANT O&M BOOKS Boiler calculations for Boiler operation engineer (BOE) exam Viva Questions & answers for preparation of BOE exam & interview  2- What are the type of prime movers (drives) used for BFPs? Prime movers: LT drive (415 V) HT drive (11 KV) Turbo drive (Steam driven) 3-What are the auxiliaries associated with BFP? BFP auxiliaries Cooling water pump & lines Lube oil system ARC valve Mechanical seal flushing system Balance leak off line & its PRV 4-What are the various pipe lines connected to BFP? Questions & Answers on AFBC Boilers Suction pipe line D

### Calculation of heat rate & efficiency of the power plant

Heat rate  is the amount of energy used by an electrical generator/power plant to generate one kilo Watt-hour (kWh) of electricity Heat rate (HR) = Heat input / Power generation =Kcal / Kwh Boiler calculations for Boiler operation engineer (BOE) exam Viva Questions & answers for preparation of BOE exam & interview Total heat input: The chemical energy available in the fuel (coal, biomass, oil, gas etc) is converted into heat energy in Boilers, this process is called as oxidation. The heat available in the fuel is measured in terms of Kcal/kg, KJ/kg or BTU units. The part of this fuel is used as useful heat and rest is lost as dry flue gas loss, moisture loss, un  burnt loss, radiation/convection losses etc.Based on Boiler efficiency this heat energy from the fuel is utilised, generally fuel heat utilisation is in the range of 60 to 90%. This heat generated in the boilers due to oxidation of fuel is used to generate high pressure & temperature steam. Thus genera

### STEAM CONDENSER,VACUUM AND CALCULATIONS

A steam condenser is device or an appliance in which steam condenses and heat released by steam is absorbed by water. Heat is basically shell & tube type heat exchanger, where cooling water passes through tubes & steam condenses in shell. The functions of the condensers are: It condenses the steam exhausted from Turbine last stage Increase the thermal efficiency of the plant reducing the exhaust pressure and thereby reducing the exhaust temperature It maintains a very low back pressure on the exhaust side of the Turbine Supplies feed water to Boiler through deaerator TOP-6 BEST POWER PLANT O&M BOOKS Condenser related components: Hot well Cooling water inlet & outlet system Cooling tower Support springs or expansion neck Air Ejector system Condensate extraction system Cooling water tubes & tube sheet Vacuum breaker valve Safety valve or rapture disc Water box Air & water vent lines Types of steam condensers: Surface Co

### 22-Most likely Question Answer Guide for Boilers troubleshooting

TOP-6 BEST POWER PLANT O&M BOOKS 1.What are the emergencies that are expected to happen in boiler operation? Emergencies that can happen in boilers operation are: Boilers tubes leakage Failure of feed water control station Unbalanced draft in furnace Furnace explosion Blow down valve failure Feed water pumps failure Secondary combustion in super heaters and ESP Also read 16-Perfect reasons for increasing the fuel consumption of Boilers 2.List out the potential reasons for boiler tubes failure. Reasons for boiler tubes failure: Failure due to overheating Failure due to internal scales Failure due to aging Failure due to uneven expansion Failure due to ash and flue gas erosion Failure due to material defects Failure due to internal and external tube corrosion Improper or effected circulation due to opening/passing of low point drains 3.List down the sequential action taken after boiler tube leakage to restore the boiler. Following activities ar

### Questions answers & calculation on Boiler draught & Chimney

1-What do you mean by the term draught? It is the pressure difference, which causes flow of gases to take places. 2-What is the function of draught in Boiler? To supply the combustion air required for proper combustion To evacuate the combustion products from the furnace or combustion chamber To evacuate the combustion products to the atmosphere So draught is the pressure difference between the inside the boiler and outside air. Inside the boiler pressure is due to combustion products (Flue gas) & outside pressure is due to fresh atmospheric air. 3-What are the different types of draughts used in power plant boilers? There are mainly two types of draughts. Natural draught & artificial draught Natural draught is generally obtained by Chimney Artificial draughts have main two types Steam jet: It is again classified into Induced & forced draught Mechanical draught: This is classified into Induced draught, forced draught & Natural draught

### Boiler calculations for Boiler operation Engineer Exam (BOE)

1-Oxygen percentage in Boiler outlet flue gas is 4.9%, then what will be the percentage of excess air? We have excess air EA = O2 X 100 / (21-O2)                                    EA = 4.7 X 100 / (20-4.7)                                    EA = 30.71% 2-Calculate the Oxygen level (O2) in flue gas, if excess air is 25% We have Excess air EA = O2 X 100 / (21-O2)                                    25 = O2 X 100 / (21-O2)                                    O2 = 4.2% 3-A Boiler’s combustion system requires 5.5 kg of air for burning 1 kg of fuel, then calculate the total air required for complete combustion if its flue gas has 4.1% of O2 We have, Total air = (1 + EA/100) X Theoretical air EA = O2 X 100 / (21-O2) EA = 4.1 X 100 / (20-4.1) = 25.78% Therefore Total air = (1 + 25.78/100) X 5.5 = 6.92 kg of air per kg of fuel burnt 4-A Coal fired boiler having total heating surface area 5200 M2 produces 18 kg of steam per square meter per hour of heating surface, then calculate the Boiler cap