Skip to main content

Why does vacuum in steam condenser reduce or drop??

  1-High exhaust temperature: Vacuum drops or maintains at lower side due to high exhaust steam temperature flow into steam condenser. This high exhaust temperature is mainly due to 1-Operation of Turbine at lower loads 2-More clearance in labyrinth seals 3-Not operating exhaust hood sprays 4-More load on condenser 5-Breaking of ejector U loop 2-Low circulating cooling water flow Vacuum in condenser reduces due to inadequate cooling water flow through steam condenser. This is mainly due to; 1-Problems associated with pumps 2-Air pockets in pipe line 3-Leakages in cooling water line 4-Stuck of discharge valve of pump 3-High cooling water temperature at condenser inlet Higher cooling water temperature at condenser inlet results into reduction of vacuum due to poor heat transfer from steam to water 4-Poor heat transfer in condenser Very less or poor heat transfer in steam condenser reduces vacuum to very low level resulting into high exhaust temperature &am

Boiler Feed Pumps Design factors & Pump Capacity calculation



 Design data from site:


Ø  Type of liquid handled and its maximum & minimum temperatures

Ø  Water qualities like pH & Hardness

Ø  Water Kinematic Viscosity (cst)

Ø  Specific gravity of water at operating temperature

Ø  Net positive suction head required (NPSHR)& available (NPSHA)

Ø  Boiler capacity & operating pressure

Ø  Maximum & operating blow down rate of Boiler

Ø  Height of Steam drum

Ø  Height of Deaerator (Water inlet source)

Ø  Pressure drop in Economiser

Ø  No.of valves used in feed water discharge line & corresponding pressure drop as per standard.

Ø  Maximum & minimum suction pressure available at pump suction

Ø  Type of cooling water & its maximum flow available for bearings cooling

 Pump Design Data:

Ø  Rated flow (M3/hr)

Ø  Rated head (meters)

Ø  Nominal speed & Effective speed (RPM) (NS > ES)

Ø  NPSHR (meter)

Ø  Pump & Motor efficiency

Ø  No.of stages of pump

Ø  Motor rating

Ø  Pump suction & discharge nozzles sizes

Ø  Vapour pressure (kg/cm2)

Ø  Pump’s shut off head (meter)

Ø  Pump minimum flow (25 to 30% depends on pump operating head & flow)

Ø  Cooling water pressure

Portable 12 in 1 Multi Utility Hammer Tool Kit Knif Axe Bottle Opener Nut Car Safety Tool Kit


Other considerations:

Ø  Balance leak off water flow source (generally balance leak off water is diverted to Deaerator)

Ø  Pump Rotation direction (Clock wise viewed from drive end)

Ø  Cooling water flow rate (LPM)

Ø  Pump’s suction & discharge elements hydro. Test pressures

Ø  Material of constructions (MOC) of all pump internals

Ø  Type of coupling used between pump & motor shaft

Ø  Type of Shaft seal used (Mechanical seal)

Ø  Protections given for pump (Protections like, bearing vibration sensors, bearing temperature sensors, pressure relief valve for balance leak off line, phase sequence relay for direction of rotation, cooling water pressure, pump over load etc)

Boiler feed pumps Questions & Answers

Calculate the boiler feed pump and motor size required for a boiler of capacity 90 TPH has steam drum working pressure 88 kg/cm2. The height of the drum is 35 meter from boiler feed pump Centre. And the suction water to pump is taken from Deaerator which is situated 15 meter above the pump centre.

Given that,

Boiler capacity: 90 TPH = 90 M3/hr

Steam drum operating pressure = 88 kg/cm2

Steam drum height from pump centre = 35 meter

Height of Deaerator tank from pump centre =15 meter


Boiler blow down 1%

Deaerator operating level from floor: 2.5 meter

Pressure drop in Boiler economizer: 2.5 kg/cm2

Pressure drop in feed water control station: 5 kg/cm2

Pressure drop in line, gate and globe valves and bends of feed water line: 5 Kg/cm2

Pump operating temperature: 110 °C

Economizer out let feed water temperature: 275 °C

Pump and motor efficiency: 65% and 95% respectively.

Total required discharge head for pump = (Drum operating pressure + Drum height (m) + Economiser pressure drop + Control valve pressure drop + Pressure drop in line, gate and globe valves and bends) X 1.10 (Take 10–15% extra margin)

= (88 kg/cm2 + 35 meter + 2.5 kg/cm2 + 5 kg/cm2 + 5 kg/cm2) X 1.1

Convert all the pressure head into gravity head in meter from formula P = Density X g X H…by taking the densities of fluids (water) at operating temperatures.

 P = Desnity X g X H


Then, we have,

Total discharge head = (1248 m + 35 m + 33 m + 52.5 m + 52.5 m) X 1.1 = 1563 meter

Pump rated flow = (Boiler MCR + Blow down %) X 1.25 (Take 25–30% extra margin)

                           = (90 + (90 X 1/100)) X 1.25

                    = 113.625= 115 M3/hr

The Capacity of flow seems more, it is better to consider 3 pumps 2 running & 1 stand by


Select 2 Nos of pumps 1 working & 1 standby (1W+1S)

For motor power, we have

Pump hydraulic power Ph = (Flow (m3/sec.) X Total head (Hd - Hs) X g (m/sec2) X density of feed water at 110 °C)/1000

                                          = 0.0319 X (1563 - 15 - 2.5) X 9.81 X 951/1000

                                          = 459.94 KW

Pump shaft power Ps = Pump hydraulic power X 100/Pump efficiency

                                   = 459.94 X 100/65 = 707.60 KW

Motor input power = (Pump shaft power X 100/Motor efficiency) X 1.10

                       = (707.60 X 100/95) X 1.10

                       =819.32 KW

From motor selection chart select Standard sized motor that is 825 KW



Select 3 Nos of pumps, 2 Working & 1 stand by (2W+1S)

Then, capacity of the one pump = 115/2 = 57.5 M3/hr (May take 58 m3/hr round figure)

For motor power, we have

Pump hydraulic power Ph = (Flow (m3/sec.) X Total head (Hd - Hs) X g (m/sec2) X density of feed water at 110 °C)/1000

                                    = 0.01611 X (1563 - 15 - 2.5) X 9.81 X 951/1000

                                    = 232.28 KW

Pump shaft power Ps = Pump hydraulic power X 100/Pump efficiency

                             = 232.28 X 100/65 = 357.35 KW

Motor input power = (Pump shaft power X 100/Motor efficiency) X 1.10

                       = (357.35 X 100/95) X 1.10

                       = 376.16 KW

From motor selection chart select Standard sized motor that is 375 KW

Factors Considered for Boiler Engineering

Comparing Case-1 & II

Total Installation capacity of Boiler feed pumps for case-1 = 825 X 2 = 1650 KW

Total Operation power = 825 X 85% = 701.25 KW


Total Installation capacity of Boiler feed pumps for case-II = 375 X 3 = 1125 KW

Total Operation power = 375 X 2 X 85% = 637.5 KW


In view of energy conservation considering Case-II is feasible. But in view of installation & maintenance cost Case-I is feasible.

 Questions & Answers on Power plant Rigging

Challenging situations & troubleshooting during boiler light up & start up


Frequently visited posts

Boiler feed pumps (BFP) questions & answers for interview

Boiler feed pumps (BFP) questions & answers for interview: 1-What is the function of Boiler feed pumps (BFP) in power plant? Functions: To supply the feed water to boilers To conduct the Boiler hydraulic tests To supply the desuperheating & attemperator water required for process steam lines & boilers respectively TOP-6 BEST POWER PLANT O&M BOOKS Boiler calculations for Boiler operation engineer (BOE) exam Viva Questions & answers for preparation of BOE exam & interview  2- What are the type of prime movers (drives) used for BFPs? Prime movers: LT drive (415 V) HT drive (11 KV) Turbo drive (Steam driven) 3-What are the auxiliaries associated with BFP? BFP auxiliaries Cooling water pump & lines Lube oil system ARC valve Mechanical seal flushing system Balance leak off line & its PRV 4-What are the various pipe lines connected to BFP? Questions & Answers on AFBC Boilers Suction pipe line D

Basic things you must know about nut bolts & spanners

A Bolt is a mechanical device which has head on one end of a body and a thread on the other end designed for fastening of two parts. Bolt is inserted into holes in assembly parts, it is mated with a tapped nut. Tension is normally induced in the bolt to compress the assembly by rotating the nut. This may also be done by rotation of the bolt head. A Screw is a headed and threaded bolt used without a nut. It is inserted into an internally tapped hole and tension is induced by rotation of the screw head. A Stud is a fastener with no head but it has threads at both ends of the shank. It, like a screw, has one end those screws into a tapped hole. A nut is used on the other end to create tension. Major diameter – largest diameter of thread (D) Minor diameter – smallest diameter of thread Pitch – distance between adjacent threads.       Boiler calculations for Boiler operation engineer (BOE) exam TOP-6 BEST POWER PLANT O&M BOOKS Types of nut bolts & Washer

Calculation of heat rate & efficiency of the power plant

Heat rate  is the amount of energy used by an electrical generator/power plant to generate one kilo Watt-hour (kWh) of electricity Heat rate (HR) = Heat input / Power generation =Kcal / Kwh Boiler calculations for Boiler operation engineer (BOE) exam Viva Questions & answers for preparation of BOE exam & interview Total heat input: The chemical energy available in the fuel (coal, biomass, oil, gas etc) is converted into heat energy in Boilers, this process is called as oxidation. The heat available in the fuel is measured in terms of Kcal/kg, KJ/kg or BTU units. The part of this fuel is used as useful heat and rest is lost as dry flue gas loss, moisture loss, un  burnt loss, radiation/convection losses etc.Based on Boiler efficiency this heat energy from the fuel is utilised, generally fuel heat utilisation is in the range of 60 to 90%. This heat generated in the boilers due to oxidation of fuel is used to generate high pressure & temperature steam. Thus genera


A steam condenser is device or an appliance in which steam condenses and heat released by steam is absorbed by water. Heat is basically shell & tube type heat exchanger, where cooling water passes through tubes & steam condenses in shell. The functions of the condensers are: It condenses the steam exhausted from Turbine last stage Increase the thermal efficiency of the plant reducing the exhaust pressure and thereby reducing the exhaust temperature It maintains a very low back pressure on the exhaust side of the Turbine Supplies feed water to Boiler through deaerator TOP-6 BEST POWER PLANT O&M BOOKS Condenser related components: Hot well Cooling water inlet & outlet system Cooling tower Support springs or expansion neck Air Ejector system Condensate extraction system Cooling water tubes & tube sheet Vacuum breaker valve Safety valve or rapture disc Water box Air & water vent lines Types of steam condensers: Surface Co

22-Most likely Question Answer Guide for Boilers troubleshooting

TOP-6 BEST POWER PLANT O&M BOOKS 1.What are the emergencies that are expected to happen in boiler operation? Emergencies that can happen in boilers operation are: Boilers tubes leakage Failure of feed water control station Unbalanced draft in furnace Furnace explosion Blow down valve failure Feed water pumps failure Secondary combustion in super heaters and ESP Also read 16-Perfect reasons for increasing the fuel consumption of Boilers 2.List out the potential reasons for boiler tubes failure. Reasons for boiler tubes failure: Failure due to overheating Failure due to internal scales Failure due to aging Failure due to uneven expansion Failure due to ash and flue gas erosion Failure due to material defects Failure due to internal and external tube corrosion Improper or effected circulation due to opening/passing of low point drains 3.List down the sequential action taken after boiler tube leakage to restore the boiler. Following activities ar

Questions answers & calculation on Boiler draught & Chimney

1-What do you mean by the term draught? It is the pressure difference, which causes flow of gases to take places. 2-What is the function of draught in Boiler? To supply the combustion air required for proper combustion To evacuate the combustion products from the furnace or combustion chamber To evacuate the combustion products to the atmosphere So draught is the pressure difference between the inside the boiler and outside air. Inside the boiler pressure is due to combustion products (Flue gas) & outside pressure is due to fresh atmospheric air. 3-What are the different types of draughts used in power plant boilers? There are mainly two types of draughts. Natural draught & artificial draught Natural draught is generally obtained by Chimney Artificial draughts have main two types Steam jet: It is again classified into Induced & forced draught Mechanical draught: This is classified into Induced draught, forced draught & Natural draught

Boiler calculations for Boiler operation Engineer Exam (BOE)

  1-Oxygen percentage in Boiler outlet flue gas is 4.9%, then what will be the percentage of excess air? We have excess air EA = O2 X 100 / (21-O2)                                    EA = 4.7 X 100 / (20-4.7)                                    EA = 30.71% 2-Calculate the Oxygen level (O2) in flue gas, if excess air is 25% We have Excess air EA = O2 X 100 / (21-O2)                                    25 = O2 X 100 / (21-O2)                                    O2 = 4.2% 3-A Boiler’s combustion system requires 5.5 kg of air for burning 1 kg of fuel, then calculate the total air required for complete combustion if its flue gas has 4.1% of O2 We have, Total air = (1 + EA/100) X Theoretical air EA = O2 X 100 / (21-O2) EA = 4.1 X 100 / (20-4.1) = 25.78% Therefore Total air = (1 + 25.78/100) X 5.5 = 6.92 kg of air per kg of fuel burnt 4-A Coal fired boiler having total heating surface area 5200 M2 produces 18 kg of steam per square meter per hour of heating surface, then calculate the Boiler cap