Mastodon Power plant and calculations

Questions & Answers on Boiler feed pumps design , operation & maintenance

  

DESIGN DATA FOR BOILER FEED PUMPS

 Design data from site:

Ø  Type of liquid handled and its maximum & minimum temperatures

Ø  Water qualities like pH & Hardness

Ø  Water Kinematic Viscosity (cst)

Ø  Specific gravity of water at operating temperature

Ø  Net positive suction head required (NPSHR)& available (NPSHA)

Ø  Boiler capacity & operating pressure

Ø  Maximum & operating blow down rate of Boiler

Ø  Height of Steam drum

Ø  Height of Deaerator (Water inlet source)

Ø  Pressure drop in Economiser

Ø  No.of valves used in feed water discharge line & corresponding pressure drop as per standard.

Ø  Maximum & minimum suction pressure available at pump suction

Ø  Type of cooling water & its maximum flow available for bearings cooling

 Pump Design Data:

Ø  Rated flow (M3/hr)

Ø  Rated head (meters)

Ø  Nominal speed & Effective speed (RPM) (NS > ES)

Ø  NPSHR (meter)

Ø  Pump & Motor efficiency

Ø  No.of stages of pump

Ø  Motor rating

Ø  Pump suction & discharge nozzles sizes

Ø  Vapour pressure (kg/cm2)

Ø  Pump’s shut off head (meter)

Ø  Pump minimum flow (25 to 30% depends on pump operating head & flow)

Ø  Cooling water pressure

 

 

Other considerations:

Ø  Balance leak off water flow source (generally balance leak off water is diverted to Deaerator)

Ø  Pump Rotation direction (Clock wise viewed from drive end)

Ø  Cooling water flow rate (LPM)

Ø  Pump’s suction & discharge elements hydro. Test pressures

Ø  Material of constructions (MOC) of all pump internals

Ø  Type of coupling used between pump & motor shaft

Ø  Type of Shaft seal used (Mechanical seal)

Ø  Protections given for pump (Protections like, bearing vibration sensors, bearing temperature sensors, pressure relief valve for balance leak off line, phase sequence relay for direction of rotation, cooling water pressure, pump over load etc)

Calculate the boiler feed pump and motor size required for a boiler of capacity 90 TPH has steam drum working pressure 88 kg/cm2. The height of the drum is 35 meter from boiler feed pump Centre. And the suction water to pump is taken from Deaerator which is situated 15 meter above the pump centre.

Given that,

Boiler capacity: 90 TPH = 90 M3/hr

Steam drum operating pressure = 88 kg/cm2

Steam drum height from pump centre = 35 meter

Height of Deaerator tank from pump centre =15 meter

Assumption:

Boiler blow down 1%

Deaerator operating level from floor: 2.5 meter

Pressure drop in Boiler economizer: 2.5 kg/cm2

Pressure drop in feed water control station: 5 kg/cm2

Pressure drop in line, gate and globe valves and bends of feed water line: 5 Kg/cm2

Pump operating temperature: 110 °C

Economizer out let feed water temperature: 275 °C

Pump and motor efficiency: 65% and 95% respectively.

Total required discharge head for pump = (Drum operating pressure + Drum height (m) + Economiser pressure drop + Control valve pressure drop + Pressure drop in line, gate and globe valves and bends) X 1.10 (Take 10–15% extra margin)

= (88 kg/cm2 + 35 meter + 2.5 kg/cm2 + 5 kg/cm2 + 5 kg/cm2) X 1.1

Convert all the pressure head into gravity head in meter from formula P = Density X g X H…by taking the densities of fluids (water) at operating temperatures.

 P = Desnity X g X H

       

Then, we have,

Total discharge head = (1248 m + 35 m + 33 m + 52.5 m + 52.5 m) X 1.1 = 1563 meter

Pump rated flow = (Boiler MCR + Blow down %) X 1.25 (Take 25–30% extra margin)

                           = (90 + (90 X 1/100)) X 1.25

                    = 113.625= 115 M3/hr

The Capacity of flow seems more, it is better to consider 3 pumps 2 running & 1 stand by

Case-I:

Select 2 Nos of pumps 1 working & 1 standby (1W+1S)

For motor power, we have

Pump hydraulic power Ph = (Flow (m3/sec.) X Total head (Hd - Hs) X g (m/sec2) X density of feed water at 110 °C)/1000

                                          = 0.0319 X (1563 - 15 - 2.5) X 9.81 X 951/1000

                                          = 459.94 KW

Pump shaft power Ps = Pump hydraulic power X 100/Pump efficiency

                                   = 459.94 X 100/65 = 707.60 KW

Motor input power = (Pump shaft power X 100/Motor efficiency) X 1.10

                       = (707.60 X 100/95) X 1.10

                       =819.32 KW

From motor selection chart select Standard sized motor that is 825 KW

Case-II

Select 3 Nos of pumps, 2 Working & 1 stand by (2W+1S)

Then, capacity of the one pump = 115/2 = 57.5 M3/hr (May take 58 m3/hr round figure)

For motor power, we have

Pump hydraulic power Ph = (Flow (m3/sec.) X Total head (Hd - Hs) X g (m/sec2) X density of feed water at 110 °C)/1000

                                    = 0.01611 X (1563 - 15 - 2.5) X 9.81 X 951/1000

                                    = 232.28 KW

Pump shaft power Ps = Pump hydraulic power X 100/Pump efficiency

                             = 232.28 X 100/65 = 357.35 KW

Motor input power = (Pump shaft power X 100/Motor efficiency) X 1.10

                       = (357.35 X 100/95) X 1.10

                       = 376.16 KW

From motor selection chart select Standard sized motor that is 375 KW

 

Comparing Case-1 & II

Total Installation capacity of Boiler feed pumps for case-1 = 825 X 2 = 1650 KW

Total Operation power = 825 X 85% = 701.25 KW

 

Total Installation capacity of Boiler feed pumps for case-II = 375 X 3 = 1125 KW

Total Operation power = 375 X 2 X 85% = 637.5 KW

 

In view of energy conservation considering Case-II is feasible. But in view of installation & maintenance cost Case-I is feasible.

General Questions & Answers on BFPS

1-What is the function of Boiler feed pumps (BFP) in power plant?

Functions:

To supply the feed water to boilers

To conduct the Boiler hydraulic tests

To supply the desuperheating & attemperator water required for process steam lines & boilers respectively

  2-What are the type of prime movers (drives) used for BFPs?

Prime movers:

  • LT drive (415 V)
  • HT drive (11 KV)
  • Turbo drive (Steam driven)

3-What are the auxiliaries associated with BFP?

BFP auxiliaries

  • Cooling water pump & lines
  • Lube oil system
  • ARC valve
  • Mechanical seal flushing system
  • Balance leak off line & its PRV

4-What are the various pipe lines connected to BFP?

  • Suction pipe line
  • Discharge pipe line
  • Bearing cooling water lines
  • Jacket cooling water lines
  • Mechanical seal flushing line
  • ARC line (Minimum re circulation line)
  • Impulse lines for instrumentation measurements (Suction pressure, discharge pressure, Differential pressure, balance leak off pressure)
  • Balance leak off line

5-What is the size of suction strainer of a BFP

It is generally 30 to 40 mesh, that is 30 or 40 hole openings in 1 linear inch on strainer.

A SS 30 wire mesh is generally wrapped on SS mesh having hole openings around 3 to 4 mm

6-What are the different protection devices given for boiler feed pumps?

  • Pressure relief valve
  • Balance leak off line
  • Auto re circulation valve

7-What is the function minimum re circulation line or Automatic re circulation valve (ARC VALVE?)

Minimum re circulation line is provided mainly for centrifugal pump with constant speed drive based on the system and vendor information. There are two types of minimum continuous flow required by the pump (Stable and Thermal). Pump is designed to operate at the flow greater than this flow rate. If pump is operated at less flow than the minimum continuous stable flow, it will damage bearing and internals and may abnormal vibration occur. Below the minimum continuous thermal flow, temperature of fluid will rise at faster rate. To avoid these problems, minimum re circulation line is provided. If the demand of the fluid is decreased below minimum continuous flow, then the auto re circulation valve of the pump will open and maintains the required flow and if flow increased more than minimum flow then auto re circulation valve closes. Generally for higher head flow like 1500 meter head pump the minimum circulation will be 20–25% of total capacity.

8-What is the function of balance leak off line?

Balance leak off line is used to balance the centrifugal pump shaft from axial thrust. During centrifugal pump operation, especially in multistage centrifugal, suction side will have relatively very less pressure as compared to the discharge side. Because of this, there are lot of possibilities that impeller along with the shaft and bearing will be pushed from discharge end to suction end which is also known as axial thrust. Balance line is used to balance the centrifugal pump shaft from axial thrust. Due to the axial thrust, pump bearings and internals will get damaged. To nullify this effect, a tapping from discharge end (between balancing & counter balancing disc) is connected to a balancing drum.


9-Why the balance leak off line water is not connected to suction line to save the pump hydraulic power instead of directing it into Deaerator?

 Balance leak off water temperature is little bit higher than pump operating temperature which may lead cavitations if it mixes with suction water. For some pumps where there is no risk of cavitations, in such cases this line is connected to suction side of the pump.

10-What is the operating pressure of balance leak off line ?

It is just 0.5 to 1 kg/cm2 more than pump’s suction pressure

10a-What is the standard  gap maintained between balance & counter balance discs?

It is around 0.8 to 1.2mm

 

11-What does it indicate if balance pressure is increasing gradually?

It indicates the wear out of balance or counter balance disc. That is gap or clearance between these two discs has increased

12-How do you calculate the maximum allowable balance leak off pressure?

Maximum allowable balance leak off pressure = 0.03X (Shut off pressure-Suction pressure)+ Suction pressure.

13-What is the velocity of water in the balance leak off line?

It should not exceed 5 m/sec on any account

14-Why the BFP discharge water & balance leak off temperature is slightly more than that of suction water temperature?

15-Due to the compression action of water inside the pump, the water pressure rises around 2 to 3 deg C more than the suction water. Water is an in compressible fluid

15-What do you mean by the shut off pressure in centrifugal pumps?

Shut-off head is a condition, when a centrifugal pump runs with discharge valve closed. It is the maximum head generated by a centrifugal pump with zero flow and relatively less power.

16-How do cavitations occur? What are the abnormal effects of cavitations?

Pump cavitation occurs when the pressure in the pump inlet drops below the vapour pressure of the liquid. Vapour bubbles form at the inlet of the pump and are moved to the discharge of the pump where they collapse and make high sound and vibrations often taking small pieces of the pump with them.

 

 

 

 

 

 

Cavitation is often characterized by:

Loud noise often described as a grinding or “marbles” in the pump.

Loss of capacity (bubbles are now taking up space where liquid should be).

Pitting damage to parts as material is removed by the collapsing bubbles.
17-What do you mean by NPSHA & NPSHR in BFPs?

NPSHA: Net positive suction head available is the absolute pressure at the suction port of the pump.

 NPSHR: Net positive suction head required is the minimum pressure required at the suction port of the pump to prevent the pump from cavitations.

NPSHA should be always greater than NPSHR (NPSHA >  NPSHR)

18-What is the significance of NPSH in BFPS?

If BFPs do not have required NPSH, then there will be more chances for formation of cavitations.

How the pump speed is related to NPSH

NPSHR varies approximately with the square of pump speed.

NPSHR = N2

19-How do you calculate the NPSHA ?

NPSHA = Absolute pressure in

NPSHa = Ha +- HZ - Hf + Hv - Hvp

Where, Ha is the absolute pressure on the surface of the liquid in the supply tank.

HZ is vertical distance between the surface of the liquid in the supply tank and the center line of the pump.

Hf is friction losses in the suction piping.

Hv is Velocity head at the pump suction port.

Hvp Absolute vapour pressure of the liquid at the pumping temperature of the pump, it could lead to cavitations of pump.

 

20-What is the significance of vortex breakers in pumps?

A vortex breaker is a device/arrangement in pumps to stop the formation of a vortex when a fluid (liquid or gas) enters into pump suction. The formation of vortices can entrain vapour in the liquid stream, leading to poor separation in process steps such as distillation or excessive pressure drop, or causing cavitations.

21-What are the reasons for Vortexing in pumps?

Vortexing can occur if any of the following conditions are present:

  • Low liquid levels.
  • Liquid level falling greater than 1 Meter/sec.
  • There is a large concentration of dissolved gases in the liquid.
  • High outlet velocities in pipes leaving vessels. Generally greater than 3 meters/sec.
  • Liquids near their vapour point.
  • High circulation caused by asymmetrical inlet or outlet conditions.
  • Inlet piping too close to the wall or bottom of the tank.

22-What are the protection interlocks given for BFPs.

Protection interlocks: That is BFP will trip/stop on following conditions

  • Low Deaerator level
  • High bearing vibrations
  • High bearing temperature
  • Low cooling water pressure
  • More differential pressure of suction strainer
  • High load
  • Higher balance leak off pressure
  • Low speed (<40% of rated speed)

23-Write down the BFP start permissive interlocks

  • Start permissive interlocks
  • Deaerator level normal
  • Bearing temperature normal
  • Bearings vibrations normal
  • Cooling water pressure normal
  • Motor bearing temperature, winding temperatures normal
  • Discharge valve close
  • Suction valve open
  • Suction pressure normal
  • Differential pressure normal
  • Arc Valve open

24-How do you start the BFP?

BFP start up  sequence

  • Ensure all the start permissive are healthy
  • Ensure no maintenance activities are going on BFP & pump is ready to start with all respect
  • Start the pump from DCS by giving >80% command to VFD
  • Observe the bearing temperature, vibration & speed ramp rate
  • Ensure pump has reached its 50% speed within 10-15 seconds
  • If all parameters (discharge pressure, bearing temperature & vibrations, motor current, winding temperatures etc) are normal
  • Then open the discharge valve slowly
  • After 100% opening of discharge valve rise the speed as per your requirement
  • Note: Ensure all the parameters are normal on every operation on BFP

25-Why it is not allowed to run the BFPS at speed lesser than 50% of rated speed?

For journal bearing BFPS at speed < 50%  the oil splash rings will not flash oil in bearings, leading to the damage to the bearings due to low lubricating oil.

26-What will happen if BFPs run in reverse direction?

If pump runs in reverse direction for more than 5 seconds, there will be the more chances of pumps to seize

27-How do you stop the BFP?

  • Pump stop sequences:
  • Reduce the pump speed slowly up to 60% of rated
  • Close the discharge valve
  • Shut down the pump

28-What is the recommended minimum head for BFP operation?

Should not be less than 10% of its rated head except in start-up & shutdown conditions?

29-What will happen if pump is started and stopped with discharge valve open?

  • Pump may trip due to sudden motor over load
  • Alignment may get disturb
  • Shaft coupling may damage
  • May harm to bearings of pumps and motor
  • Piping supports may get disturbed
  • Pump foundation fasteners may get loose
  • So it is always recommended to start and stop the pump with discharge valve close.

29-What are the reasons for pump to seize?

Following conditions can cause pump to seize:

  • No suction or less liquid flow to suction
  • Operating pump continuously at lesser NPSH
  • Reverse direction rotation of pump
  • Damaged strainer
  • Foreign materials in impellers
  • Uneven thermal expansion of pump internals

30-What is the recommended acceptable value for a BFP shaft run out?

 It is around 0.03 mm (Max. 0.05 mm)

 

31-When should one can carry out alignment on BFP

Alignment on BFP shall be done when the temperature of the pump is <50 Deg C or in atmospheric temperature.

32-Why do you use 2 dial gauges for axial alignment of BFP?

 BFP has more axial float that is 8 to 9 mm without bearings & seal & 0.8 to 1 mm with bearings & seal, so in order to get accurate readings 2 dial gauges are used for angular alignment & 1 dial gauge for parallel alignment. Refer above figure

 33-What are the shutdown preservation methods for BFP?

 Shutdown preservation method

  • Depressurize the pump
  • Drain all the water
  • Fill the pump with 1:2 or 1:1  Glycol water mixture.
  • Rotate the pump shaft twice in a week

34-What is the recommended bearing temperature for BFPs?

It should be less than 75 deg C (Max 90 deg c)

35-What are the recommended bearing vibrations for BFPs?

It should be less than 3 mm/sec (Max 5 mm/sec)

36-What is the allowable leakage drops for BFP mechanical seal

15 drops/minute

37-What should be allowable the DP across strainer

38-What is the filter mesh size for BFP oil replacement

Mesh size is 30 micro meters

39-What preventive maintenance activities that you are going to carryout on BFPS?

Preventive maintenance activities:

  • Pump cleaning
  • Oil level checking & top up if required
  • Alignment correction
  • Suction strainer cleaning
  • Cooling water lines flushing
  • Foundation bolts tightness checking

40-What is the acceptable impeller & wear ring clearance in BFP

0.1 to 0.3 mm max.

 Boiler feed pumps start up & shut down procedure

Qualification,roles & responsibilities of power plant manager

 

 Qualification: BE or Diploma with BOE

Experience: 10 to 15 years

Requisite characters & Qualification:

1-He should have thorough knowledge of power plant operation, maintenance & troubleshooting.

2-He should have experience in minimum 3-4 power plants

3-He should have good communication skills

4-He should have good documentation skills

5-Power plant manager should have thorough knowledge in Operation & maintenance activities

6-He should have good soft skills

7-Should have good leadership & Ownership qualities

8-Should have patience & ability to listen his subordinates

9-Should look more on man & machine safety rather than generation & performance

10-Should conduct or arrange trainings among various departments

11-Should handle all situations calmly with patience

12-Should have ability to implement innovative ideas

13-Should have well versed with legal & statutory norms related to Boilers & power plant

14-Should have good drafting skills

15-Should have good negotiation & presentation skills

16-Should strive to improve plant performance

17-Should have good administration & commercial skills

 Roles & Responsibilities:

1-Supervising plant operation & maintenance activities & ensuring safety in every activity

2-Maintenance spare planning

Read >>>Interview Questions for Powerplant manager

3-Maintenance annual budget preparation

4-Site expenditures & budgeting

5-Man power recruitment as per plant requirement

6-Man, machine & property safety

7-Plant house keeping

8-Preparation of monthly management information system

9-Reviewing of daily, weekly & monthly maintenance report

10-Review of daily, weekly & monthly generation reports

11-Arranging internal trainings on safety & other technical subjects

12-Arranging trainings by external experts like OEM, consultants etc

13-Arranging internal audits among various departments

14-Coordination between top management & employees

15-Coordination between top management & stake holders

16-Cost control

17-Appreciation for best performing employees

18-Expedition for following administration rules strictly


 BEST BOOKS FOR POWER PLANT OPERATION & MAINTENANCE

 

 

Objective & Viva Questions & Answers for preparation of Boiler operation Engineer (BOE) exam & Boiler Interview







1-Why Boiler is considered as explosive equipment / system?

Boiler involves the generation of steam at higher pressure & temperature upon release of this into atmosphere could cause disasters.

2-How do you specify the Boilers?

Boilers are specified by their operating pressure, temperature, steam generating capacity & even by heating surface.

3-What are the various circuits involved in Boilers?

Water circuit, Steam circuit, air circuit & flue gas circuit

4-Write down the various energy used / generated in power plants?

  • Chemical energy (fuel)
  • Thermal energy (Heat present in flue gases & steam)
  • Kinetic energy (rotation of Turbine rotor),
  • Mechanical energy (shaft power on Turbine)
  • Electrical energy (In generators).

5-Why steam, is generated at high pressure & temperature?

High pressure & temperatures steam is having more heat content & also has more potential to do work.

6-At what pressure do you carryout Hydraulic test on Boilers?

For new boilers it is 1.5 times the design pressure & for old boilers it is 1.25 times the design pressure (also depends on Boiler life & its physical conditions)

7-What is the standard method or procedure followed for boiler pressure rising during hydraulic tests?

Pressure rise is 3.5 kg/cm2 per minute

8-What will happen if drum safety valves have been set at higher blow down rates?

Super heater coils may over heat due to insufficient flow of steam

8a-What are the reasons for failure of super heater coils?

  • Overheating due to insufficient fuel
  • Erosion due to high flue gas
  • Internal scaling
  • Priming

9-What is the MOC of steam drum?

Carbon steel: SA 516 Gr.70

9a-What is the MOC of water wall tubes & super heater coils?

Carbon steels 210 Gr.A

Super heater coils: SA 213 Gr.T11, T22, T 91 & T92

10-Why do you carryout pre heating & post heating before welding works?

Pre heating: For expelling out the moisture present in the materials

Post heating: It is done after the welding is done for relieving residual stress due to welding

11-Why the pressure gauges installed at boilers firing floor show more reading as compared that of installed at lines?

Firing floor gauges show actual line pressure & pressure head due to height from line to firing floor (around 30 meters)

How do you carryout performance Guarantee (PG) test of powerplant equipments??

12-Why it is been recommended to operate boiler safety valves at least once in a shift or day or week?

To avoid seat stuck up due to rusting

13-What is the allowable reduction of tubes thickness?

It is around 20% of original thickness. For example a SH coil of original thickness is 5mm, then it should be replaced if its thickness at straight portion reduces up to 5-5X 20% = 4 mm

14-What are the reasons for overheating Boilers pressure parts?

Overheating is due to

  • Wrongly set burners/spreaders
  • High velocity of flue gases
  • More firing rate
  • Internal scaling

15-On what factors Boilers thermal expansion depends?

It depends on

  • Boiler operating temperature
  • Boiler tube materials composition
  • Length of tubes

16-What are the reasons for fish mouth failure of boiler tubes/coils?

Over heating

Erosion & corrosion

16a-What do you mean by priming in Boilers?

It is the carryover of water particles into steam

17-What could be the probable causes of priming?

  • Drum level fluctuation
  • Boiler load fluctuation
  • Boiler parameters fluctuation

18-What is the reasons for monitoring of Oxygen level in flue gases?

To control combustion & to achieve maximum efficiency of combustion by optimising excess air

19-What are the functions of steam drum?

  • Steam drum acts as water storage device
  • Separates steam & water
  • Provides space for internal chemical treatment
  • Removes sludge from boilers through blow down
  • Accommodates safety valves to relieve excess pressure during abnormal operating conditions

20-What is the function of start-up vents in boilers?

  • To control steam pressure during abnormal operating conditions
  • To provide minimum flow through super heater coils
  • To increase main steam temperature during low loads

21-Why steam drum dish end thickness is lesser than that of cylindrical portion

Because: Stress produced in dish ends are circumferential & are less as compared to stress developed in longitudinal portion.

22-What do you mean by an equivalent evaporation?

Quantity of water evaporated at 100 deg C to dry saturated steam at 100 deg C

23-What are the reasons for more main steam temperature?

  • More excess air
  • High moisture fuel
  • More convective heat transfer at super heater zone due to loss of turbulence
  • Failure of attemperator control valve
  • Operating the Boiler at lower feed water temperature at economiser inlet.

24-Why it is been not recommended to give blow down during high steaming rates?

Sudden opening of IBD valves or water wall bottom header valves will affect circulation rate & may lead to failure of water wall tubes.

25-Why Deaerators are placed at higher elevation?

To give NPSH to boiler feed pumps

26-What are the functions of Deaerator?

  • To remove dissolved oxygen
  • To store the feed water
  • To increase the feed water temperature
  • To give NPSH to boiler feed pumps
  • Allows space for LP dosing (Oxygen scavenger dosing)

27-More height of Chimney creates what?

Creates more natural draught & helps to reduce load on ID fans

28-What is the function of draught system?

  • To force air for combustion
  • To expel out products of combustion from Boiler

29-What are the different types of draughts used in Boilers?

Forced draught, induced draught & Balanced draught?

30-On what factors chimney construction depends?

  • Quantity of flue gas generated per hour
  • Draught to be produced
  • Sulphur content in fuel
  • Environment clearance

31-Why the ID fans are not situated between APH & ESP?

If placed between ESP & APH, Fan size increases due to higher specific volume of gases. As flue gas volume decreases as its temperature decreases.

32-Where do you use steel Chimneys?

For economy at lower flue gas flow steel chimneys are more preferred

33-What is the velocity of flue gas inside the chimney?

It is 10 to 14 m/sec

34-What is the velocity of flue gas inside the ESP?

It is around 0.75 to 1 m/sec

35-What factors affect the draught produced in Chimneys?

Flue gas temperature & air temperature

35a-What is the velocity of wind considered for Boiler Construction?

Around 39 m/sec

36-What do you mean by cold air inversions in chimney?

 It happens when outside air pressure is more than flue gas pressure inside the chimney

37-When can cold air inversions happen?

This phenomenon happens when number of boilers operating at various loads are connected to a single Chimney

38-What is the disadvantages of concrete chimneys over metal chimneys?

  • High susceptible for thermal shock
  • High cost of construction

39-What does it mean that Chimney is producing good draught?

If chimney is producing good draught means, flue gas temperature is more & hence Boiler efficiency is less

40-How do you say that high pressure & temperature power plants have greater efficiency?

High pressure & temperature steam will have more heat content & high enthalpy drop will be available in turbine expansion.

41-What do you mean by circulation ration in boilers?

It is the inverse of mass steam content

Circulation ratio = Mass flow rate of steam & water mixture / Mass flow of steam through tubes



Practical Approach to Power Plant Operation and Maintenance

42-What do you mean by a load control range of a Boiler?

Boiler operating generation range in which boilers auto controls work.

43-In which cases do you take emergency shutdown of Boilers?

  • During tubes leakage
  • Overshooting of steam temperature
  • Boiler furnace explosion
  • Boiler brick work damage
  • Furnace draught fluctuation
  • Failure of Boiler feed pumps
  • Failure of drum level gauges (local & remote)

44-What do you mean by MCR & ECR in Boilers?

MCR: Maximum continuous rating

ECR: Economic continuous rating

45-In what load Boiler will have higher efficiency?

In ECR

46-What is the lowest load range of boiler to operate it comfortably?

It is around 30 to 40%

47-In all most all cogeneration & Thermal power plants lowest range of super heater temperature is 485 to 500 deg C, Why?

This is for protecting Turbine last stage blades from water particles erosion damage

48-What adverse effect do you observe in an overloaded Boiler?

  • It affects circulation velocity
  • Flue gas temperature increases
  • Steam temperature increases may result into SH coil failure

49-Why do you measure O2 & CO2 Percentages in flue gas?

To know about combustion, whether it is proper or not.

50-How do you differentiate hot, warm & cold start-up of Boilers?

  • Hot start up: Boiler is restarted within 6 to 10 hours shutdown (Within a shift)
  • Warm start up: Boiler is restarted within 10 to 70 hours shutdown (Within 3 days)
  • Cold start up: If boiler is started after 70 to 90 hours of shutdown (more than 3 days)

51-What are the various methods of Boilers preservation during shutdown?

Wet preservation method

Dry preservation method

52-Where do you use wet preservation method?

Used for standby boilers & they should be available for immediate use

53-Where do you use Dry preservation method?

Used for Boilers which are kept shutdown for long periods & they are not required for immediate use

54-What is the concentration of Hydrazine for wet preserved Boilers?

It is >200 ppm

55-What is the alternative chemical used for wet preservation

It is Sodium sulphite & concentration maintained is 350-400 ppm

56-What is the significance of Slag screens?

These are the staggered tubes installed in flue gas path to avoid clogging of tubes as a result of  cooling & adhering of molten slags.

57-What are the drum internals?

These are the internal parts of steam drums utilized for separation of steam water mixture & for chemical dosing

Drum internals are

1. Cyclone separators

2. Chevrons

3. Demisters

4. HP dosing connection

5. Feed water connection

6. CBD line

58-What do you mean by steam separation?

It is the process of separating bulk water particles from steam

59-What are the various methods used for separation of water particles from steam?

  1. Centrifugal separation method
  2. Use of baffles
  3. Abrupt change of steam water mixture direction
  4. By gravity method
  5. Direct hitting on plates

60-What is dry pipe in Boilers?

Dry pipe is the perforated pipe fitted at the most height level of boiler to provide dry steam (around 98%)

61-What are the Boiler auxiliaries?

These are the system or equipments used in Boilers to boost of the Boiler efficiency & performance

These are

  • Economiser
  • Super heaters
  • Air preheaters
  • Boiler fans & pumps
  • Soot blowers
  • Water storage tank
  • Chemical dosing system
  • PRVS

62-What are boiler mountings?

These are the devices used for safe operation of Boilers

Mountings are:

  • Safety valve
  • Boiler level gauge
  • Steam stop valve & NRV
  • Start-up vent valve

63-Why do ID fans & FD fans are not installed before ESP & after APH respectively?

This is for reducing fan size & load on it .As flue gas & air volume is more at higher temperatures, in order to drag & push these high temperature flue gas & air need to install bigger size fans

64-What type of Impellers used in ID & FD fans & why?

Backward curved fans are used, as these offer very less resistance to rotate

65-Why do you use super-heated steam in power plants?

More heat is with SH steam & more enthalpy drop available & hence more efficiency. And also SH steam is having no water particles due to this equipments life increases

66-What is the necessity of forced circulation in high pressure boilers?

As the pressure increases beyond 150 kg/cm2 up to 220 kg/cm2 density of steam & water becomes same & hence there will not be any chance for natural circulation due to density difference. Hence there need arises for forced circulation

67-Do you prefer soot blowing after shutdown of Boilers?

Generally NO, because soot blowing may result into explosion due to leftover unburnt fuel & hot ash

68-What do you mean by wire drawing?

It is the process of steam expansion & no any work done or loss. It happens in orifice, flow meters & throttled valves.

In PRV & PCVs stations does not contribute in work done or loss & hence upon reducing pressure of normal (saturated steam) steam, it becomes super-heated.

69-What will happen if economiser inlet feed water temperature drops?

Lower feed water temperature at economiser inlet lead to more absorption of heat from flue gases. This causes drop in flue gas temperature, may lead to acid corrosion.

70-What will happen if economiser outlet feed water temperature increases more than design?

More feed water temperature at economiser outlet may lead to steaming of water, which could ultimately cause overheating & failure of economiser tubes. This happens in low load operation.

71-What is the recommended flue gas temperature at APH & ESPs?

It is more than acid due point temperature to avoid corrosion of materials. For coal & biomass fired boilers it is always >140 Deg C

72-What will happen to the enthalpy of steam if its pressure increases & temperature remains constant?

Its enthalpy decreases

73-What will happen to the enthalpy of steam if its temperature increases & pressure remains constant?

Its enthalpy increases

74-What will happen to the enthalpy of steam if its temperature & pressure increase?

Enthalpy increases

75-What will happen to the enthalpy of evaporation of saturated fluid if its pressure increases?

Enthalpy of evaporation decreases if pressure is increased

76-What will happen to the enthalpy of evaporation of saturated fluid if its temperature increases?

Enthalpy of evaporation decreases if temperature is increased

77-What will happen to the density of water if its temperature increases?

Density decreases

78-What will happen to the density of water if its pressure increases?

Density decreases

79-What happens to density of steam if pressure & temperature increase?

Density also increases

80-What is the function of bypass valve arranged for main steam stop valve?

It is mainly for pressure equalizing to open the main stop valve & also for initial charging of steam line

81-When do you use single & 3-element drum level controllers?

Single element is used when the Boiler load is less than 30% of MCR

3-element controller is used when boiler load is >30% of MCR

82-A 85 TPH boiler is operating on 80% load & its blow down is 0.8%.Calculate the makeup water required

Boiler operating load = 85 X 80 / 100 =68 TPH

Blow down water quantity = 68 X 0.8 / 100 =0.544 TPH

So make up water quantity is 0.544 TPH

83-What will happen to the boiler tubes if pH is more or less than recommended?

If pH is less it leads to corrosion of tubes & if more it leads to scaling

84-What are the scale forming contents of water?

Salts of calcium & magnesium, sodium carbonates, nitrates & silica

85-A feed water sample is not showing the residual hydrazine, then what does it mean?

It means that there is no treatment for oxygen scavenging, or chemical dosed is insufficient. This could lead to corrosion of pressure parts.

86-Which chemicals are used in Boilers HP & LP dosing systems?

HP dosing: Tri-sodium phosphates

LP dosing: pH booster & Oxygen scavengers

87-When your chemist asks you for giving IBD?

IBD is given, when following parameters in Boiler water exceed?

Silica, Phosphate, pH & conductivity

88-What is the major loss in coal fired & bagasse fired boilers?

In coal fired Boilers major loss is heat loss due to dry flue gas. And in Bagasse fired boilers major loss is heat loss due to moisture present in fuel

89-What do you mean by air to fuel ratio?

It is the amount of air required to burn 1 kg of fuel

90-What do you mean by steam to fuel ratio?

It is the amount of steam generated on burning 1 kg of fuel

91-What is the velocity of flue gas at various zones of Boilers?

  • Furnace: 1 to 2 m/sec
  • Super heaters: 2 to 4 m/sec
  • Economiser: 6 to 7 m/sec
  • APH: 8 to 12 m/sec
  • ESP (Inside): 0.75 to 1 m/sec
  • ID fan inlet: 13 to 16 m/sec

92-What is the function of SCAPH?

SCAPH (Steam coil air pre heater) is used to heat FD air which is entering into APH or some type SCAPH is used an alternative of APH.

93-Which contents of fuels are responsible for more excess air?

Bagasse moisture, hydrogen & carbon contents cause more requirement of combustion air

94-Which content of the fuel has very least on combustion air requirement?

Sulfur

95-Which content of the fuel upon increase in % causes less combustion air?

Oxygen

96-What is the excess air required for combustion of Bagasse, Coal, Gas, Oil & Wood?

  1. Bagasse: 25-35%
  2. Coal: 20-25%
  3. Gas: 5-10%
  4. Oil: 10-15%
  5. Wood: 35-45%

97-Which fuels require more & least excess air for complete combustion?

Wood needs more excess air & Gas needs less excess air among all fuels

98-What can cause if Boiler line safety valve is set at higher blow down?

Results into

  • Drum level fluctuation
  • More load on Super heater coils
  • Steam loss

99-What is the function of over fired Air (OFA)?

OFA is used to create turbulence & to increase residence time of fuel particles in furnace

100-What are the reasons for incomplete combustion?

Reasons are;

  • Less excess air
  • More ash content in the fuel
  • More moisture in the fuel
  • Not achieving the 3Ts (Temperature, Time & Turbulence) in furnace
  • Unbalanced draught in furnace

101-What happens to the velocity & pressure of steam in steam line if flow is increased more than design?

Velocity of steam increases & pressure drop occurs

102-How do you reduce excess load from ID fans?

  • By maintaining optimum excess air
  • By arresting all cold air ingress points
  • By arresting APH tubes leakages
  • By conducting regular maintenance of fans

103-How do you reduce excess load from FD fans?

  • By maintaining optimum excess air
  • By arresting all air & flue gas leakages
  • By controlling moisture level in the fuel

 Power plant standard operating procedures

Must read following Boiler related articles

 BOE exam calculations

Boiler safety valve maintenance procedure

Challenging situations during Boiler light up & start up

Factors considered for Boiler design

Boiler gauge glass flushing

Reasons for more fuel consumption of Boilers

IBR forms & their significance

QnA on spent wash Boilers

AFBC Boilers QnA

Chimney & Draught

Why does Boilers main steam temperature increases more than design?


15-Emergencies in power plant operation

Most visited posts