50-Most frequently asked Questions Answers on Bearings


1-Define the term Bearing
A bearing is a machine element which reduces friction between two members, having relative motion with respect to each other. It’s a device used to support and guide rotating, oscillating or sliding shaft.
2-What are the functions of bearings?
  • Supports & guides the rotating parts
  • Reduces the friction & hence no or less wear & tear in moving parts
  • Reduces the noise
  • Reduces the lubricants consumption
  • Reduces the power consumption of an equipment where it is being used
Its all about HP heaters

3-Where do you find the application of bearings?
Bearings found applications in almost all type of industries from a small trimmer to big & big Machines.
4-What type of loads act on bearings?
Bearings can take in both axial, radial directions with small misalignment
What are the main types of bearings used in industries?
Main types of bearings are Journal bearing & Rolling contact bearings
5-Briefly explain the Journal bearings used in Industries



Journal or plain bearings consist of a shaft or journal which rotates freely in a supporting metal sleeve or shell. There are no rolling elements in these bearings.
It is a cylindrical bush, add up of suitable material and containing properly machined ID and ODs.It is a part of shaft or pin that rotates inside the bearing. They handle high load and velocities because metal to metal contact is minimal due to oil film. Operation is smoother. They require large supply of lubricating oil. For high speed need forced cooling/lubrication there may be possibilities of failures of bearings in start up and shutdown.
6-Where do you find the applications of Journal bearings?
Journal bearings used High speed & high load machines.
In power plant journal bearings found application in;
  • Steam Turbine
  • Boiler feed pumps
  • Slat chain conveyors
7-What are the two types of Journal bearings?
  • Oil lubricated: Used for high speed & high load carrying machines
  • Grease lubricated journal bearings: Used for High load & low speed machines
8-What are the different materials used for the manufacturing of Journal bearings?
Materials used are
Copper & its alloys, generally Gun metal, bronze
White metal & Babbitt metal: A tin base alloy containing 88% of tin, 8% of antimony and 4% of copper & bismuth
9-Why do you select the copper based alloys for journal bearings?
Because they have low coefficient of friction
10-What is the maximum operating temperature of Journal bearings?
Journal bearings can be operated up to the temperature 100-105 Deg C
11-Classify the rolling contact bearings.
A. Ball Bearings:
  • Deep groove ball bearing
  • Angular contact ball bearings
  • Self-aligning ball bearing
  • Thrust ball bearing
B. Roller Bearings:
  • Spherical roller bearing
  • Cylindrical roller bearing
  • Taper roller bearing
C. Thrust Roller and Needle Bearings
12-What are the parts of rolling contact bearings?



Parts of Bearings:
  • Outer race
  • Inner race
  • Cage
  • Rolling elements
13-What is the material of composition of rolling contact bearings?
It is hardened Chromium steel
14-What is the hardness of bearing materials/parts?
Hardness is up to 55-60 HRC
15-How do you specify the Rolling contact bearings?
Rolling contact bearings are specified as;
  • Bearing bore size
  • Bearing outer diameter
  • Bearing width
  • Bearing cage type & material
  • Bearing clearance
16-What do you mean by Bearings Prefixes & Suffixes? & Explain some of bearing suffixes
  • Prefixes are mainly used to identify bearing rolling component. 
  • Suffixes identify special designs, variants & characteristics, which differ in some way from the original design or from the current basic design
Bearing suffix:
  • Z: Steel shield on one side of bearing
  • 2Z: Steel shields on both the sides of bearing
  • ZZ: Rubber shields on both the sides of bearing
  • K: Tapered bearing bore in the ratio of 1:12
  • W33: Lubricating groove and 3 holes on outer race
  • W33X: Lubricating groove and 6 holes on outer race
  • C3: Normal bearing clearance (Clearance more than C2)
  • C4: More bearing clearance (Clearance more than C3)
  • J: Pressed steel cage
  • F: Machined steel cage
  • M/Y: Machined brass cage/Pressed brass cage
  • NR: Bearing with snap ring

17-What is the maximum operating temperature of Rolling contact bearings
It is 85 to 90 degree C for grease lubricated bearings
18-What are the various loads considered in bearings designing?
Basic static loads, involves mainly Dynamic (C) & Static loads (Co)
19-When the static load occurs on bearings?
Static load occurs on following conditions
  • When bearings are under load & stationary for long time
  • When bearings rotate < 10 RPM
  • When bearings are performing slow oscillating movements
20-How do you identify the ball bearings, taper roller bearings, Spherical roller bearings & Angular contact bearings?
Bearings can be identified based on their starting nos
  • Ball bearings Nos start with 1 & 6
  • Spherical roller bearings 2
  • Angular contact bearings 7
  • Taper roller bearings 3
  • Cylindrical roller bearings start with NU
21-How do you nomenclature the bearing 6205 2Z
Nomenclature:
  • 6 indicates the type of bearing
  • 2 Indicates OD & Width sizes of the bearings
  • 05 indicates the bore size of the bearing
  • 2Z is a Suffix, bearing having metal shields on its both sides
22-What is the difference between the bearing No.6205 & 6305
6205 has lesser OD & width than 6305 bearing, however both bearings have same bore
23-Write an example of bearing number for self aligning ball bearings
1219, 2207 etc
24-Write an example of Spherical roller bearing?
22220 EK/C3, 23215 EK/W33
25-Write an example of Angular contact ball bearing
7205, 7305
26-Write an example for taper roller bearing
30305, 31205
Note: Suffixes can be added as per specific requirement
27-Write an example for cylindrical roller bearing
NU 203 ECP, NU 2204
28-Calculate the bore diameter of Deep groove ball bearing 6208 C3
Bearing bore size is calculated as 08 X 5 = 40 mm
Similarly for bearings 6315 2Z, Bore size = 15 X 5 = 75 mm
29-Calculate the shaft size for a bearing 22222 K/C3 having tapered bore & sleeve thickness 5mm
In tapered bore spherical roller bearings 22222 K/C3,
Shaft size = (Last two digits) 22 X 5 -2 X Sleeve thickness =110 -2 X 5 = 100 mm
30-Why it is necessary to maintain minimum load on Bearings?
It has been learned from experience that bearings require a minimum applied load to insure traction for the rolling elements so they roll as the shaft starts to rotate. If the balls or rollers do not roll, they will skid on the moving raceway, wiping away the lubricating oil, and causing damage to the rolling element O.D.s and raceway surfaces. This is called skidding and the resultant damage is referred to as smearing, which will shorten bearing life.
A good approximation of the minimum load for each is:
Pmin = 0.02 x C
where:
Pmin = required minimum equivalent load on the bearing, radial load for radial bearings and thrust load for thrust bearings.
C = Bearing Dynamic Capacity
31-Why the bearings operating at higher temperature are having lower life?
Bearing Dynamic and Static Capacities will reduce at high operating temperatures. The main reason is the reduction of raceway and rolling element hardness at high temperatures.
32-What are the potential reasons for bearings failure?
Following are the main reasons for bearing failure

  • Bearings overloading
  • Wrong or miss application of the bearings
  • Misalignment
  • Lack of lubrication or improper lubricant
  • Contaminants in lubrication
  • Over lubrication
  • Operating bearing at higher temperature & vibration for long time
  • More or less bearing clearance
  • Jerk or fatigue loads
  • Improper methods of bearing installation
  • Bearing manufacturing defect

33-List down the reasons for bearing seize
  • Lack of lubrication
  • Less clearance
  • Over speed
  • Contaminant in lubricant
34-List down the steps for installation/mounting of new bearing
  • Ensure all the tools are in hand before installing the bearing.
  • Clean the shaft and bearing.
  • Measure and record the values for correct size, roundness and surface roughness.
  • Unpack the bearing.
  • For special purpose lubrication, clean the bearing with low pressure jet of kerosene.
  • After cleaning apply the correct method of fitting Press fit, adapter sleeve, withdrawal sleeve and thermal expansion type

Note:
  • For ball bearings, bearings need to apply the heat up to 90-100 Deg on induction bearing heater for easy installation.
  • Do not use oil bath for bearing heater
  • Do not cross the bearing or oil temperature above 100 deg C
  • For fitting the bearing use gun metal or nylon rod & hammering should be done on inner race only.
35-List down the procedure for bearings dismounting.

  • Select the proper tool and person
  • Decide the method of removal
  • Use special wrenches, if required.
  • Use puller, Induction heater and Oil injection method.
  • Apply force to inner ring: If removing from shaft and to outer race if removing from housing.
Note:
  • Apply load on outer race for bearing removing, do not apply load on inner race
  • If required heating, plan to apply the heat on bearing only not on shaft. May wrap wetted cloth on shaft to avoid shaft expansion
IBR forms & Acts

36-List down the Do’s and Don’ts for bearings handling and storing.
Following are the Do’s and Don’ts for bearing:
DO’s
  • Keep the bearings in protective packing till they are mounted.
  • Cover the assembled bearings appropriately to avoid dust ingress.
  • Store the bearings in dry area.
  • Use tubes, Puller, Hydraulic nuts, and other tools for removal/fixing of the bearings.
  • Use correct amount of specified lubrication at right time with correct procedure.
Don’ts
  • Over lubrication is a silent killer for bearings. Do not over lubricate.
  • Never allow welding at bearings that will damage the contact surfaces.
  • Don’t let the bearing stand upright, store them flat on their sides.
  • Do not use water to clean the bearings.
37-What do you mean by the term bearing clearance?

Bearing clearance is the clearance or gap between outer race or inner race and rolling elements. And in journal bearings it is the clearance between shaft and bearing liners.

38-How do you calculate the bearing clearance of bearing having bore diameter D?
As a thumb rule Bearing clearance minimum = 0.00185 X D
Bearing clearance maximum = 0.00254 X D

39- What do you mean by basic rating life of a Bearing?

 Basic rating life of a bearing is the life that corresponds to 90% reliability using standard materials & manufacturing quality at normal operating conditions.
It is given by
L10 = (C/P)e

Where C is bearing dynamic load in KN and P is dynamic equivalent load (KN) in axial or radial directions.
e = Exponent (e = 3 for ball and 10/3 for roller bearings).

40-What is meant by bearing life and how do you calculate it?
Bearing life is the number of revolutions that 90% group of bearings can run without causing flaking due to rolling fatigue.
Bearing life L10 = (C/P)e X 106/60 N

41-What factors do affect the bearings life?

Following factors affect on bearings life
  • Operating speed
  • Operating environment
  • Load on bearing
  • Type of lubricant

42-What is the misalignment tolerance for ball bearings?
Deep groove ball bearing : 2 Minutes of arc (1 Degree=60 minutes of arc)

Self aligning ball bearing
  • 2.5 Deg-SR1200
  • 3 Deg-SR1300
  • 2.5 Deg-SR2200
  • 1.5  Deg-SR 2200 2RS1
  • 3 deg-SR 2300
  • 1.5 Deg-SR 2300 2RS1
Angular contact ball bearing: No much misalignment tolerance is allowed

43-What is the misalignment tolerance for spherical roller bearings?
  • Spherical roller bearing
  • series 21300 - 1°
  • series 22300 - 2°
  • series 23100 - 1.5°
  • series 24100 - 2.5°
44-What is the misalignment tolerance for taper roller bearings?

Taper roller bearing: 3 Minutes of arc

45-What is the misalignment tolerance for thrust bearings?

Thrust bearings: Thrust Roller bearing-2 to 2.5 degree & Cylindrical thrust bearing-No misalignment

46-What are the operating, alarm & trip level vibrations for bearings?
  • Operating level vibrations:1 to 4 mm/sec
  • Alarm level vibrations: 4 to 6 mm /sec
  • Trip level Vibrations: > 6 mm/sec
47-How do you calculate the grease required for re-lubrication of a Bearing?

Grease required for re-lubrication in grams is = Bearing OD X Bearing width X 0.005
48-On what factors bearing re-lubrication & frequency depends?
  • Bearing operating speed
  • Bearing operating environment
  • Operating temperature
  • Bearing operating vibrations
  • Bearing operating hours
49-What causes bearing currents?
When voltage is present on the motor shaft it can overcome the insulating effect of the bearing lubrication film. This cause a current flow that results effectively in electric discharge machining (EDM) of the bearing, causing premature wear and ultimately, early failure. 
50-where & why do you use the insulated bearings?


Insulated bearings are used in Alternators & VFD motors. Insulated bearings are fitted at Non drive end side of the machine.
The purpose of insulated bearing for Motors with VFD drives or the Alternators is to prevent the flow of circulating current in a closed circuit through bearing and ground and consequently prevent the bearing from damage.

An important new solution for motors in IEC frame sizes 132 to 250 is to install a motor shaft grounding brush that directs the current to the ground via the brush, rather than through the bearing. This protects  the motor itself and the complete installation. The brush can be pre-installed on new motors by specifying a variant code. Or it can be retro-fitted on site.



Questions answers & calculation on Boiler draught & Chimney




1-What do you mean by the term draught?

It is the pressure difference, which causes flow of gases to take places.

2-What is the function of draught in Boiler?
  • To supply the combustion air required for proper combustion
  • To evacuate the combustion products from the furnace or combustion chamber
  • To evacuate the combustion products to the atmosphere
  • So draught is the pressure difference between the inside the boiler and outside air. Inside the boiler pressure is due to combustion products (Flue gas) & outside pressure is due to fresh atmospheric air.
3-What are the different types of draughts used in power plant boilers?
  • There are mainly two types of draughts.
  • Natural draught & artificial draught
  • Natural draught is generally obtained by Chimney
  • Artificial draughts have main two types
  • Steam jet: It is again classified into Induced & forced draught
  • Mechanical draught: This is classified into Induced draught, forced draught & Natural draught

4-What do you mean by the Natural draught?

Natural draft is obtained by the use of Chimney. It produces the draft where the air and gas are forced through the fuel bed, furnace, and boiler passes.

5-How do you produce the mechanical induce draft?

It is produced by Induced draft fan

6-How do you produce the forced mechanical draft?

It is produced by Forced draught fan & secondary air fans.

7-How do you produce the balanced mechanical draft in Boilers?

Balanced draught is produced by ID & fans.

8-What are the advantages of mechanical draught?

Advantages:
  • Reduced chimney height
  • Easy control of combustion & evaporation
  • Improvement in the efficiency
  • Prevents smoke
  • Can consume low grade fuel
  • The fuel consumption per HP of mechanical draught boilers is 15% less than that of artificial boiler
  • Grate required for fuel burning is less

9-What do you mean by static draught?

The difference of pressure causing the flow of gases is known as static draught. Its value is very small
10-What do you mean by Static pressure?

It is the potential energy put into the system by the fan. It is given up to the friction in the ducts and at the duct inlet as it is converted to velocity pressure.

11-What do you mean by velocity pressure?


It is the pressure measured along the line of the flow that results from the air flowing through the duct.

12-What do you mean by total pressure?

It is the sum of static pressure & velocity pressure

13-How do you calculate the air flow in the duct?

Volumetric air flow Q m3/sec = Duct area in M2 X Velocity in m/sec

14-How much draft is maintained in the boiler furnace zone?

It is -3 to + 3 MMWC for proper combustion

15-What is the FD air draught loss in Air Pre heater?

It is 50 to 60 MMWC

16-What is FD air draught loss in SCAPH (Steam coil air pre heater)?

It is 20 to 30 MMWC

17-What is the draught loss in FD air in flow element?

It is around 10 to 20 MMWC

18-What is the draught loss of flue gas in Economizers?

Around 70-90 MMWC

19-What is the draught loss of flue gas in APH?

Around 50-60 MMWC

20-What is the draught loss of flue gas in ESP?

It is 20 to 30 MMWC

21-What is the draught measured at ID fan outlet?

Draught measured at 2 to 4 meter from ID fan discharge nozzle is up to +5 MMWC & as you go nearer to Chimney the draught goes into negative

22-How do you calculate the differential pressure of a ID fan?

Differential pressure of a ID fan =Pressure (draught) at suction side – Pressure at the discharge side

23-How do you calculate the differential pressure of a FD fan?

Differential pressure of a FD fan =Pressure (draught) at discharge side + Pressure at the suction side

24-What are the reasons for more positive draught in Boiler furnace?

It is due to:
  • More FD air flow
  • Sudden load drop on Boiler
  • Improper spreading of the fuel
  • Variation of fuel moisture

25-What are the reasons for more negative draught in Boiler furnace?

It is due to:
  • Higher ID fan speed & lower FD fan speed
  • Low load on Boiler
26-Why the FD fan size and power rating is less than ID fan?

Because FD fan is used to handle cold air & ID fan for hot gases (FD air + Fuel). Hot gases have lower density than cold air, hence size & capacity of the to expel the gases is more.

27-What are the reasons for draught losses?
  • Frictional resistance offered by the flues and gas passages to the flow of the flue gases
  • Loss near the bends in the gas flow circuit
  • Loss due to friction head in equipments like grate, economizer, super heater etc
  • Loss due to imparting velocity to the flue gases
28-Why do prefer artificial draught over natural draught?
  • To reduce chimney height
  • To get more draught
  • To reduce fuel consumption
29-What do you mean by the term Chimney?

Chimney is a vertical tubular structure built either of masonry, concrete or steel. Chimneys found application in power plants, textile plants, steel industries, Diesel plant etc. For smaller boilers up to 50 TPH steel chimneys are used and the boilers of capacity more than 50 TPH concrete chimneys are used

30-What are the functions of Chimney?
  • To vent the flue gases produced in the Boiler
  • To produce draught
  • To reduce the load on Boiler ID fans
  • To protect environment by venting the flue gas at suitable height
31-Explain the construction of concrete Chimney?

Chimney is normally cylindrical in construction. It is exposed to hot gases inside & cold air at outside. Inside of the chimney is lined with refractory bricks to protect concrete part from high temperature & erosion by flue gas. Chimney is specified based on its inside, outside diameters & height.

32-How does the draught produce in Chimney?

Draught in the chimney is due to density difference between the columns of the hot flue gases in chimney & cold air outside.

33-How do you specify the Chimney?

Chimney is specified based on its Outer diameter, inside diameter and height.

34-How do you calculate the draught produced in Chimney (Hw)?

Hw = 353 X H (1/Ta – 1/Tg (Ma+ 1)/Ma)
H = Chimney height in meters
Ta = Atmospheric temperature in K
Tg = Flue gas temperature in K
Ma = Mass of air & Mass of flue gas = Ma+1

35-How do you calculate the velocity of the flue gas in the Chimney?

Velocity of flue gas V = √(2XgXH1)
H1 = Head in terms of gas column
Calculated as H1 = H ((Ma/(Ma+1)) X Tg/Ta)-1)

36-How do you calculate the mass of flue gas flowing through the Chimney?

Mg (kg/sec)= Density of gas (kg/m3) X Area of Chimney (m2) X Velocity of flue gas in Chimney (m/sec)

37-In which type of draught flue gas temperature leaving the Boiler is higher?

Flue gas temperature in Natural draught chimney is more as compared to artificial draught

38-Calculate the height of the Chimney required to produce a draught equivalent to 20 mmwc if the temperature of the FG  is 180 deg c and ambient temperature is 25 Deg C.And air required for complete combustion per kg of fuel is 7 kg

We have formula,
Hw = 353 X H (1/Ta – 1/Tg (Ma+ 1)/Ma)
Ta = 273 + 25 = 298 K
Tg = 273+180 = 453 K
Ma = 7 kg
Ma+1 = 7 + 1 =8 Kg
Hw = 20 mmwc
20 = 353 X H (1/298 – 1/453 (8/7))
H = 43.17 meter


39-Calculate the mass of flue gas flowing through the Chimney when the draught produced is equal to 18 mmwc. Temperature of flue gas is 250 Deg C and ambient temperature is equal to 30 deg c. The flue gas formed per kg of fuel burnt are 15 kg.Take diameter of chimney 2 meter

Given
Hw = 18mmwc
Tg = 250 + 273 = 523 K
Ta = 30 + 273 = 303 K
Mass of flue gas Ma + 1 =15 kg
Chimney diameter D= 2 meters
Let us calculate Chimney height H
Hw = 353 X H (1/Ta – 1/Tg (Ma+ 1)/Ma)
18 = 353 X H ((1/303 – 1/523 (15/14))
H = 34.28 m
We have H1 = H ((Ma/(Ma+1)) X Tg/Ta)-1)
H1 = 353 X 34.28 (((14/15) X (523/303))-1)
H1 = 20.94 meter
Velocity of flue gas inside the chimney V = = √(2XgXH1) = √(2x9.81x20.94) = 20.2 m/sec
Mass of dry flue gas Mg = A X V X Density of gas
Density of gas at temperature 250 deg c = 273 X1.293 / 523  = 0.67 kg/m3
Area of chimney A = 3.142 X 22/4 = 3.142 M2
Mg = 3.142 X 20.2 X 0.67 = 42.52 kg/sec

39-Calculate the draught produced in Chimney of height 50 m, if density of the flue gas is 0.8 kg/m3 and atmospheric temperature is 25 deg c.

Density of atmospheric air = 273 X 1.293 / (273+25) = 1.18 kg/m3
Draught produced in Chimney is given by
Hw = H (Density of cold air-Density of flue gas) = 50 X (1.18-0.8) = 19 mmwc

40-How do you increase the draught produced in Chimney?
  • By increasing the height of Chimney
  • By increasing the flue gas temperature
41-How do you calculate the minimum height required for Chimney?

Minimum height of the chimney is calculated based on Sulphur dioxide emission.
H = 14 X Q0.3
Q = Sulphur emission rate in kg/hr

42-How do you calculate the draught pressure for maximum discharge?

It is given by P = 176.5 X H / Ta
Hw = Chimney height in meters
Ta = Absolute atmospheric temperature in Kelvin
Hw = Draught in mmwc


Buy.....For power plant operations & maintenance QnA







Callas Multipurpose Foldable Laptop Table with Cup Holder | Drawer | Mac Holder | Table Holder Study Table, Breakfast Table, Foldable and Portable/Ergonomic & Rounded Edges/Non-Slip Legs (WA-27-Black)


                                         

Steam turbine practical questions & answers for Turbine engineers & operators



STEAM TURBINE QUESTIONS AND ANSWERS FOR TURBINE ENGINEERS & OPERATORS


1-Why do the U loop is provided at the inter condenser drain line of ejector?



U loop is to seal the ejector & steam condenser pressure as there is very less pressure difference around 0.25 to 0.3  kg/cm2. So for such low pressure difference U loop seal is economic & practical

2-Why do the float valve are provided at the after condenser of ejector condensate line?



Float valve is used to seal the ejector & steam condenser pressure as there will be around 0.89 to 0.95 kg/cm2 pressure difference. For such high pressure difference float valve is most practical arrangement.
3-Generally, where the pressure relief valves are fitted at ejector systems?

                            

There two pressure relief valve in SJAE (Steam jet air ejector) one is fitted at ejector nozzle chamber & other is fitted at condensate water outlet line
4-What is the significance of hot well recirculation line in CEP condensate line?
Significance of hot well recirculation line
1-To provide minimum flow to CEP pump
2-To safe guard ejector tubes due to lack of cooling during low loads on turbine due to less/no water flow through the tubes.
5-How much power you can save by replacing the steam jet ejectors by vacuum pump?
Generally ejectors consume steam around 500 kg/hr at pressure 10 kg/cm2 & temperature 200 0C
Assume this steam is taken from Turbine bleed & there not using of live steam
Heat content in ejector steam =H = Ms X Hg..Refer steam table for enthalpy
H = 500 X 673.75 = 336875 kcal/kg
Convert it in terms of KW....We have 1 KW = 860 kcal
Therefore Power that can be developed by ejector by considering STG efficiency 60% is = 336875 X 60% / 860 = 235 KWH
6-What will happen to hot well level of steam condenser when vacuum drops suddenly?
Hot well level rises suddenly
7-How the lower vacuum contributes in increased steam consumption of Turbine?
Lower vacuum is nothing but higher exhaust temperature, so turbine exhausts high temperature steam to condenser leading to loss in heat. So in order to maintain given load  set point Turbine consumes more steam.
And also higher pressure in condenser creates reaction force on turbine rotor making it to drag more steam to maintain its speed & torque as per load.
8-Why the vacuum in steam condenser which is situated at higher elevation is lower than that of situated at lower elevation?
Because at higher elevation, atmospheric pressure goes on decreasing...So maximum maintainable vacuum will be less.
9-At full load operation of the steam Turbine, where will be the highest  steam velocity at the inlet or at exhaust of the Turbine?
At full condensing mode steam velocity is more at exhaust end of the turbine as the exhaust duct has more area as compared to inlet steam line area.
10-What are the reasons for high exhaust temperature in steam Turbines?
High exhaust temperatures is due to;
  • Lower vacuum in the condenser
  • Turbine running on partial load
  • Over load on steam condenser
  • Ejector U seal loop broken
11-What do you mean by the coast down time in steam Turbines?
It is the time taken by steam turbine rotor to come down from its rated speed to zero speed after trip or shutdown of Turbine. Turbine speed starts reducing once the ESV closes.
It depends on vacuum in the condenser. If vacuum is more it takes more time to come down to rest position & vice versa.
12-What do you mean by soaking period in steam turbines?
During initial starting turbine is allowed to expand evenly and smoothly by allowing sufficient time of warm up, this period is called soaking period.
This is done for allow uniform expansion of turbine casing, rotor & other internal parts.
13-What is the purpose of gland sealing? When to charge gland steam after vacuum pulling or before?
The purpose of the gland sealing is to prevent air from ingression in the vacuum system during pulling vacuum. The steam is applied on both labyrinth glands & even at control valve glands. The pressure maintained is around 0.1 kg/cm2
Gland steam can be charged based on Turbine operation conditions
Cold start up:
In this turbine is in atmospheric temperatures, hence gland steam is charged after vacuum pulling at vacuum say -0.2 to -0.5 kg/cm2. If gland sealing is done before vacuum pulling, there may be chances of developing thermal stresses.
Hot start up:
Gland sealing is charged even before vacuum pulling. Charging the gland seal steam after vacuum pulling may cause cold air shock in the glands which may lead to rotor distortion
14-How do you select filter size of lube oil & control oil filters?
Lube oil filter size is around 25 to 40 microns: Size depends on the minimum clearance in the bearings
Control oil filters size is around 10 to 25 microns: Size depends on the minimum clearance in the HP & LP actuators.
15-What is the quantity of lube oil required for Turbine?
It is 22-25% of total lube oil flow
16-What is the quantity of lube oil required for Gear box?
It is 60-65% of total lube oil flow
17-What is the quantity of lube oil required for Generator?
It is 8-10% of total lube oil flow
18-What is the quantity of lube oil required for Jacking (jacking oil pump)?
It is 8-10% of total lube oil flow to their bearings. Generally JOP line is given to alternator & even at both alternator & turbine to facilitate lifting of rotor during rotation of shafts to avoid friction between rotor & bearing.
For example an alternator has lube oil flow 90 LPM, then flow of lifting oil (Jacking oil flow) is 9 LPM
19-Why the oil coolers are placed before lube oil filter?
Due to temperature difference the oil DP may vary at filters, so oil is first passed through cooler, where its temperature reduces to constant operating level then it is passed through filters
20-What is the temperature difference between Turbine exhaust temperature & condensate steam in hot well?
Actually if there is no leakage in the system, both the temperatures should be same. However 2 to 3 degree centigrade difference is allowed.
21-Why do you control the outlet valve of oil cooler water line for controlling the lube oil temperature instead of water inlet line?
It is for avoiding starvation of tubes due to no or less flow of water into the tubes.
22-What do you mean by Turbine cold, warm, hot & very hot start up?
Cold start: after a shut-down period exceeding 72 h (metal temperatures below approximately 40 % of their fully-load values in 0C)
Warm start: after a shut-down period of between 10 h and 72 h (metal temperatures between approximately 40% and 80 % of their full-load values in 0C)
Hot start: after a shut-down period of less than 10 h (metal temperatures above approximately 80 % of their full-load values in 0C)
Very hot restart: within 1 h after a unit trip (metal temperatures at or near their full-load values).
23-What do you mean by Turbine Supervisory system?
Turbine is a high speed machine, its operation and performance is monitored through supervisory system. These are one types of protection system for Turbine.
These include.
  • Vibration probes
  • Speed probes
  • Axial displacement probes
  • Bearing temperatures TCs or RTDs
  • Differential expansion probes
  • Casing temperature TC
  • Casing expansion

24-What is the clearance between rotor & casing diaphragm?
It is 0.6 to 1.5 mm
25-Why it is necessary to measure the casing temperature of Turbine?
Casing of Turbine is made up of thick alloy material. Hence more temperature difference between inner & outer part of the casing may cause distortion. So in order to ensure the correct temperature casing temperature is being measured. There should be no more temperature difference (> 50 degree C) between top & bottom casing thermocouples
26-How do you measure the Turbine casing expansion?


It is measured with the help of LVDT
27-Why do the Turbine front connected bearing oil lines have expansion bellows & those of rear bearings oil line do not have?


Because Turbine casing expands towards front side only. In some turbines expansion bellows are provided for front & rear bearings also.
And we do not find expansion bellows for Generator & gear box oil lines.
28-Why do the lube & control supply oil lines are made up of Stainless steel SS materials & drain/return oil lines are of Carbon steel (CS)
Supply lines are connected to bearings & actuators they need o supply contaminant/bur free oil. Generally SS pipe line materials do not produce rust & burrs, whereas rust & burs formed in carbon steel pipe lines. Such formed rust or burs in CS steel will collect in MOT & later can be removed by centrifuging.
29-Why it is necessary of oil centrifuging in Turbine lube oil system?
Turbine oil gradually gets contaminated due to atmosphere moisture ingress through turbine bearing sealing system & also partial oxidation of oil. So oil need to purify to maintain its property. Also oil has some dissolved solids formed during its service, so that must be removed periodically to ensure good life of bearings & actuator system
30-What are the two methods of oil centrifuging?
Purification: It is the separation of two immiscible liquids having different specific gravity and is useful for the removal of the solids particles with specific gravity higher than the those of the liquids
Clarification: Is the process of separation of solid particles from oil or any other liquid.When the centrifuge machine is run with rotating bowl having outer disc (without hole) then this process is clarification.
When the machine run without this outer disc, then it is purification method.
In clarification process also some amount of moisture is removed along with solids & in purification method some amount of solids are removed along with moisture


31-Why the control oil temperature is more than lube oil or why control oil is not cooled in coolers?
To maintain low viscosity of the oil, control & governing system internal parts have very low operating clearances. So in order to maintain that control oil is not cooled & maintained its temperature around 60 deg C
32-What are the functions of oil vapour extraction fan (OVEF)?
  • Removes the oil mist formed in main oil tank (MOT)
  • Maintains slight vacuum (20-30 mmwc) in MOT for easy drain of lube oil from STG bearings
33-What is the difference between control oil & trip oil?
Oil delivered by control oil pump (Previously MOP was used for both lube & control oil applications) is bifurcated into two system. After one oil passes through some of protection relays to open ESV is called Trip oil & other goes to for operation of HP, MP & LP valve actuators through I to H converters is called as control oil.
34-Why Gear box is made off set alignment with Turbine?
During the operation of Turbine, the drain oil temperatures in Turbine reaches to 58 to 60 deg c, which is slightly more than Turbine, exhaust temperature (45 to 60 deg C). Gear box expands both horizontally & vertically. Hence provision in alignment is made in such a way that Gear box high speed shaft is kept down & horizontally off set. Horizontal off set side depends on the direction of turbine rotation.
35-Why there are two RTDs for Turbine pinion bearing temperature measurement?
If Turbine rotation is clock wise (view from Turbine front) then the bottom part of the bearing is on higher load & if it is antilock wise direction top part is under load. So there is always some temperature difference between these two RTDS
36-What is the function of MPU?
Magnetic pick up unit senses the Turbine speed. It is set at 0.8 to 1 distance from the gear system mounted to Turbine shaft at front end.
37-What are the reasons for high bearing temperatures & vibrations?
  • Overloading of the turbine
  • High lube oil temperature
  • Foreign materials in lube oil
  • Load fluctuation
  • More clearance in the bearing
38-On what trip interlock protection vacuum breaker valve gets open?
Vacuum breaker valve opens on activation of following trip interlocks
  • High bearing temperature
  • High bearing vibration
  • High rotor axial displacement
  • Differential expansion
  • Over speed
39-What are the causes of foam formation in lube oil?


Reasons for foam formations are
  • Air intake in oil
  • Low oil level in MOT
  • Excessive splashing of oil in bearings
  • Insufficient size of lube oil returns line
In order to rectify this anti foam agents are added into oil sump
39-What is meant by NO LOAD operation of Steam Turbine?
A turbine has NO LOAD if just enough steam is flowing into it to cover mechanical losses and to achieve or maintain rated speed.

40-What is the care should be taken while turbine is running on No-Load?

In No Load operation, no steam must be removed from extraction or bleed, Turbine should run on pure condensing mode.

41-What is the effect if Turbine is being operated on No-load for long time?

During No-Load operation of Turbine, the amount of steam flowing through the stages is so small that, the machine is running on its own juice. Turbulence arises with the middle of the blades profiles no longer being flowed round & therefore not being cooled. So running the turbine in such condition will lead to burning of blades in the middle of the flowed reaction section.





15-Emergencies in power plant operation

Most visited posts